
www.manaraa.com

Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2018-07-01

Machine Learning for Inspired, Structured, Lyrical
Music Composition
Paul Mark Bodily
Brigham Young University

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations
by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Bodily, Paul Mark, "Machine Learning for Inspired, Structured, Lyrical Music Composition" (2018). All Theses and Dissertations. 6930.
https://scholarsarchive.byu.edu/etd/6930

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F6930&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F6930&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F6930&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F6930&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F6930&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F6930&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/6930?utm_source=scholarsarchive.byu.edu%2Fetd%2F6930&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

www.manaraa.com

Machine Learning for Inspired, Structured, Lyrical Music Composition

Paul Mark Bodily

A dissertation submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Dan Ventura, Chair
Neil Thornock

Mark J. Clement
Jacob Crandall
Seth Holladay

Department of Computer Science

Brigham Young University

Copyright c� 2018 Paul Mark Bodily

All Rights Reserved

www.manaraa.com

ABSTRACT

Machine Learning for Inspired, Structured, Lyrical Music Composition

Paul Mark Bodily
Department of Computer Science, BYU

Doctor of Philosophy

Computational creativity has been called the “final frontier” of artificial intelligence due
to the di�culty inherent in defining and implementing creativity in computational systems.
Despite this di�culty, computer creativity is becoming a more significant part of our everyday
lives, in particular music. This is observed in the prevalence of music recommendation
systems, co-creational music software packages, smart playlists, and procedurally generated
video games. Significant progress can be seen in the advances in industrial applications such
as Spotify, Pandora, Apple Music, etc., but several problems persist. Of more general interest,
however, is the question of whether or not computers can exhibit autonomous creativity in
music composition. One of the primary challenges in this endeavor is enabling computational
systems to create music that exhibits global structure, that can learn structure from data,
and which can e↵ectively incorporate autonomy and intention.

We seek to address these challenges in the context of a modular machine learning
framework called hierarchical Bayesian program learning (HBPL). Breaking the problem of
music composition into smaller pieces, we focus primarily on developing machine learning
models that solve the problems related to structure. In particular, we present an adaptation
of non-homogenous Markov models that enable binary constraints and we present a structural
learning model, the multiple Smith-Waterman (mSW) alignment method, which extends
sequence alignment techniques from bioinformatics. To address the issue of intention, we
incorporate our work on structured sequence generation into a full-fledged computational
creative system called Pop* which we show through various evaluative means to possess to
varying extents the characteristics of creativity and also creativity itself.

Keywords: Machine Learning, Markov Processes, Constraint Satisfaction, Computational
Creativity

www.manaraa.com

ACKNOWLEDGMENTS

I could never have finished my PhD without the undying support of my wife, Courtney

and our three children, Austin, Siena, and Autumn. I’ll be forever indebted to a wife who

believes whole-heartedly in the value of education and who was willing to settle for a student

salary for the first 8 years of our marriage. She has sacrificed her own career and her own

hobbies so that we could earn a PhD. Though her name is not on the dissertation, the

sacrifices that she made for this goal to be achieved were as numerous and significant as any

I might have made. So congratulations, Courtney! We did it!

I approached Dr. Dan Ventura in the summer of 2015 about the possibility of doing

a PhD in computational creativity. For me that was a big leap. I would have never found

the faith and courage to do it if Dan had not believed in me. His optimism, charisma, and

friendship have played a monumental role in my success and the vision that I have of my

potential. More than investing in my PhD, he has invested in me and my future as a husband,

a father, and a academician. Thank you, Dan.

I may well have never done a PhD at all were it not for Dr. Mark Clement. Even

before serving as my Master’s advisor, Dr. Clement championed my research as an undergrad

for several years. I owe a great deal of what I know about how to be a successful researcher

to Dr. Clement. Under his tutelage I learned Linux and supercomputing; how to write

a manuscript and to use LaTeX; how to navigate the peer-review process; how to present

at conferences; and most everything I know about bioinformatics. He, too, invested in me

individually. Thank you, Dr. Clement.

I owe a deep debt of gratitude to Dr. Mike Goodrich who was there with inspired

wisdom and loving counsel at three critical junctures in my academic career. Thank you,

Mike, for taking a personal interest in helping me find my gifts and talents.

I want to thank Stanley Fujimoto whose friendship has been a vital strength to me

throughout my graduate years. I also want to thank Cole Lyman for his friendship and

www.manaraa.com

constant encouragement of my research. I’d like to thank Drs. Quinn Snell and Perry Ridge,

senior colleagues that contributed a great deal to my learning and to my research e↵orts.

I owe my earliest appreciation for collaborative research to Scott Burton and Richard

Morris. I will forever remember our work together on PIERRE (with Dan) and Conway’s

Law (with Chuck) with fondness.

Thanks to Ben Bay for his friendship and collaborations in computational creativity.

You played a pivotal role in the success of this project.

Thank you to Jen Bonnett whose unfailing encouragement and friendship has turned

to my success time and time again.

I express gratitude to Darrell Heath, Aaron Dennis, and Rob Smith whose examples

and mentorship helped me navigate in the early stages of of my graduate education.

Thanks to Sing++: Casey Deccio, Morgan Busch, Petey Alduous, Zann Anderson,

Tommy Williams, and Chuck Tolley. I will forever hold our friendship, comradery, and music

in my fondest memories. Thank you for keeping me sane and for providing opportunities to

feel valued and serviceable.

A huge thanks to my parents, Mark and Holly Bodily, for having instilled in me a love

of learning, of music, and of science from a young age; for having supported me and Courtney

and our family in so many tangible and intangible ways. You’ve seen to our every need, made

countless journeys to visit us, and filled our summers and winters with memorable family

experiences. Thank you.

Thank you to my in-laws. Heather and Lon Price have been our refuge from the

storm of life. When I look back on our time here in Provo, more than sitting in a lab I

will remember our time at Tibble Fork, the cabin, Moab, boating, and your random visits

to surprise the kids. Thank you for your continual example of selfless service and of true

friendship and love.

There was a night in the Fall of 2016 that a paper had come due. Courtney was away

and it looked that I would miss the deadline. I’d like to thank Ben and Brooke Holmes for

www.manaraa.com

stepping in that night, and for bringing me a bowl of soup later that night, and for stepping

in to lift our spirits on so many other countless occasions. Those were days never to be

forgotten.

I’d also like to acknowledge the support and encouragement of my friends from the

Italian department who, beyond forgiving me for not having pursued a PhD in Italian, have

remained loyal and enduring friends. Thank you Cinzia Noble, Ilona Klein, Rod Boynton,

and Jennifer Haraguchi.

Thanks goes to my uncle Mark Widmer who often inspired and guided me on my

journey towards earning a PhD.

Thank you to my Vocal Point brothers. Thank you for instilling in me the confidence

that I and my music have a part to play “to enlighten the hearts and minds of those within

the sound of our voice unto the filling of their souls with joy.”

A thank you to my committee for your assistance in preparing this dissertation, but

also for your availability when I needed help.

Lastly, though it may sound trite, I’d like to thank God. To borrow the words of

Nephi, “I know in whom I have trusted. My God hath been my support . . . he hath heard

my cry by day, and he hath given me knowledge . . . I will praise thee forever” (2 Nephi 4).

www.manaraa.com

Table of Contents

List of Figures ix

List of Tables xvii

1 Introduction 1

2 Computational Creativity via Human-Level Concept Learning 7

2.1 Introduction . 7

2.2 Modeling with HBPL . 8

2.2.1 Composition . 11

2.3 Results and Discussion . 25

2.3.1 Using the Joint as a Submodel . 25

2.3.2 Fitness and Self-Evaluation . 28

2.3.3 Big (Need for) Data . 28

2.4 Conclusion . 29

3 Floating and Dynamic Constraints in Non-Homogeneous Markov Models 31

3.1 Introduction . 31

3.2 Methods . 32

3.3 Dynamic and Floating Constraint Examples 39

3.3.1 Dynamic Relational Constraints in Lyrics 39

3.3.2 Floating Semantic Constraints in Haiku 43

3.3.3 Floating Stress Constraints in Prosody 44

vi

www.manaraa.com

3.4 Discussion . 45

4 Sequential Structure Inference Via Multiple Self-Alignment 46

4.1 Introduction . 46

4.2 Methods . 49

4.2.1 Multiple Smith-Waterman Self-Alignment 51

4.2.2 Genetic Algorithm Parameters . 52

4.3 Results and Discussion . 60

5 Binary Relational Constraints in Non-Homogeneous Markov Models 63

5.1 Introduction . 63

5.2 Related Work . 64

5.3 A DFA for Relational Constraints . 65

5.4 Exact Sampling of Constrained Sequences 70

5.5 Structured Parallel Sequence Generation . 72

5.6 Discussion and Conclusion . 77

6 Computational Creativity: Theory and Application 79

6.1 Introduction . 79

6.2 Characteristics of Creative Systems . 80

6.2.1 Characteristic #1: Generative . 81

6.2.2 Characteristic #2: Knowledge Representation 83

6.2.3 Characteristic #3: Intentionality . 84

6.2.4 Characteristic #4: Aesthetic . 85

6.2.5 Characteristic #5: Domain Knowledge 86

6.2.6 Characteristic #6: Autonomy . 87

6.2.7 Characteristic #7: Self-Evaluative . 88

6.3 Pop*: An Applied Example . 89

6.3.1 Pop* . 90

vii

www.manaraa.com

6.3.2 Generative . 92

6.3.3 Knowledge Representation . 97

6.3.4 Intentionality . 99

6.3.5 Aesthetic . 99

6.3.6 Domain Knowledge . 101

6.3.7 Autonomy . 103

6.3.8 Self-Evaluative . 105

6.4 External Evaluation of Creative Characteristics 105

6.4.1 Evaluative Survey . 108

6.4.2 Results . 111

6.5 Discussion . 119

7 Future Work and Conclusion 121

7.1 Summary . 121

7.2 Conclusion . 124

References 126

viii

www.manaraa.com

List of Figures

2.1 A visual representation of a possible probability distribution over global song

structures composed of verses (V), choruses (C), intros (I), outros (O), and

bridges (B). 14

2.2 A visual representation of a possible probability distribution over the number

of segments per song. Red corresponds to high probability, blue to low. . . . 15

2.3 A visual representation of a possible single-order Markov transition matrix

for segment types. Red corresponds to high probability, blue to low. The

results largely agree with intuition. For example, songs generally start with

an intro and occasionally with a verse; songs generally end with an outro and

occasionally a chorus; and segments of the same type do not generally follow

one another. 16

2.4 A visual representation of an empirically derived probability distribution over

song segment lengths, conditioned on segment type. Red corresponds to high

probability, blue to low. The results largely agree with intuition: intros, outros,

and interludes tend to be shorter; verses, bridges and choruses tend to be longer. 18

2.5 A visual representation of an empirically derived probability distribution

over song segment rhyme structures conditioned on segment length. Red

corresponds to high probability, blue to low. 19

ix

www.manaraa.com

2.6 A subsection of a visual representation of an empirically derived single-order

Markov transition matrix for harmonic chord sequences for chorus segments.

Red corresponds to high probability, blue to low. As expected for songs

normalized to the key of C major, there is high probability that the song starts

on a C major chord. 21

2.7 A visual representation of an empirically derived single-order Markov model

for melodic rhythm durations for verse segments in 4/4. Red corresponds to

high probability, blue to low. 23

2.8 Three measures of a sample composition generated using the HBPL framework.

The full composition and others can be found online at popstar.cs.byu.edu. 27

3.1 A 3rd-Order word-level Markov model. The model has been trained on the

phrases “once I saw a bear with hair” and “once I saw a cat with hair”. Since

each word is a single syllable, this example also represents a syllable-level

model. Each element in this model is a 3-length sequence of tokens and

transitions are between sequences that overlap by all but one token. Note that

though an element sequence from this model will have length 5, the generated

token sequence will have length 7 (i.e., element sequence length + order - 1). 34

x

popstar.cs.byu.edu

www.manaraa.com

3.2 A 3rd-order NHMM of length 4. This model is built from the Markov model in

Figure 3.1 and generates sequences of length 6. States marked with a white ‘X’

are pruned due to the length constraint (i.e., transitions through these states

do not result in element sequences of length 4). States marked with a gray ‘X’

are pruned due to the addition of the C3 POS constraint. This constraint is

an example of a floating constraint in that the POS constraint is e↵ectively

satisfied by any satisfying token appearing at sequence positions 3, 4, or 5.

States marked with a black ‘X’ are pruned due to the further addition of the

C4 rhyme constraint. The C4 constraint is an example of a dynamic constraint

in that the token constraint at sequence position 6 e↵ectively depends on the

token at sequence position 4. Grey transitions represent transition probabilities

that are zeroed as a result of applied constraints. 35

3.3 Floating syntax constraints. Shown are two 10-syllable phrases (representing

the overlap of two states in a 9th-order NHMM) each with its syllable-level POS

template (per the Stanford CoreNLP Toolkit). The tree represents a floating

word-level POS template constraint. Each path through the tree represents

a POS sequence that is valid per the constraint. Each phrase (representing

a Markov transition) is either kept or pruned according to whether or not

its syllable-level template (when identical consecutive tags are merged) has a

valid path through the tree. This is a floating constraint because the POS tags

from the constraint are not imposed on specific positions in the syllable-level

template. Thus despite having di↵erent syllable-level POS templates, both

phrases satisfy the constraint via the same path (grey). 41

3.4 Qualitative evaluation. Results of 470 survey responses rating human- and

computer-generated solutions to the DBTB problem. Error bars represent

standard error. 42

xi

www.manaraa.com

3.5 Haikus. These haikus are generated from syllable-level NHMMs with floating

constraints. (Left) An objet trouvé found using a 5th-order NHMM with

a nature-themed floating semantic constraint. (Right) An original haiku

generated from a 4th-order NHMM with floating word-level POS template

constraints and a beauty/earth-themed floating semantic constraint. 44

3.6 Prosodic rhythm for lyrics. Given the lyric “No more monkeys jumping on the

bed!”, we used a 4th-order NHMM over rhythm tokens to generate prosodic

rhythms like those shown here. Stressed syllables are bold and notes in

emphasized rhythmic positions are in parentheses. 44

4.1 Traditional Smith-Waterman Alignment Example. Shown is an example of

DNA alignment using the Smith-Waterman algorithm. The highest scoring

alignment is derived starting from the highest scoring cell in the alignment

matrix and then backtracking along the path taken to arrive at that cell until

the path reaches a cell with a score of 0. The alignment suggests which DNA

bases from each DNA sequence are matching. We use an analogous method to

find matching sequence events in music. Image courtesy of Wikimedia Commons. 48

4.2 Example of a music sequence event. Musical sequences are non-discrete and

thus events must be sampled. Table 4.1 describes the features and feature

values for the event sampled at the dotted red line. 50

xii

www.manaraa.com

4.3 Finding pitch structure via sequence alignment. Representing the song Twinkle,

Twinkle, Little Star as a sequence of discrete events, we align the song against

itself using a multiple Smith-Waterman alignment and a pitch-specific pairwise

scoring function. The longer red diagonal represents the repetition of pitch

between the two choruses in the song whereas the smaller diagonal represents

repetition of pitch within the bridge section. Weights for the pairwise scoring

function are learned via genetic algorithm (see Figure 4.4). In this example, 27

generations were required to find weights which maximize the fitness function

(F-score). 53

4.4 Learning weights for the pitch scoring function. As scoring function weights

are adjusted via the GA, di↵erent alignments result. We use a multiple Smith-

Waterman alignment approach to find all local alignments that result in a score

above a threshold ⌧ (also determined by the GA). As weightings are found

that more accurately align (labeled) pitch repetitions, the F-score increases.

Shown is the alignment of the song Twinkle, Twinkle, Little Star. 54

4.5 Structure Detection. For each viewpoint (i.e., column), the same scoring

function weights were used. This suggests a common scoring function can be

used to find viewpoint-specific structure across di↵erent songs. The Chorus

and Verse columns use scoring functions that are a composite of the four

primitive viewpoint scoring functions. Using the GA approach for finding

alignment weights for each viewpoint, we can extract the structure for each

viewpoint for a given song. These structural representations can then be

used for subsequent analyses including classification and generation. For each

viewpoint, v, F1 is F1(�⇤
v
). For each song, F1 is the average F1(�⇤

v
) across

alignments for all viewpoints v for that song only. 61

xiii

www.manaraa.com

5.1 A Relational automaton. The result of Algorithm 1 on inputs n = 4; M =

{(X1, X4, ⇢} (where ⇢ represents the set of rhyming word pairs); I = {Mary,

Clay}; and T derived from the non-zero transitions represented in the Markov

model shown in Figure 5.2. 68

5.2 A Markov model. 69

5.3 A “state-sensitive” pseudo-Markov model. This is the model M 0 built in

Algorithm 2 given as inputs the automaton in Figure 5.1, the Markov model

in Figure 5.2, an empty unary constraint set, and a length n = 4. This is

a “pseudo”-Markov model because, given this approach, probabilities must

remain unnormalized for proper construction of the NHMM. 73

5.4 Amortized Sample Time By Sequences Generated. Shown are average amortized

sample times per sequence (belonging to the set {aa+ b+} of fixed length 100)

when sampling using a NHMM (blue) and factor graph (orange). The NHMM

has a longer build time but shorter sample time per sequence meaning that as

the number of sequences increases, the NHMM has a lower amortized sample

time than the factor graph. 73

5.5 Sample Time By Length. Shown are average sample times for the NHMM

(blue) and factor graph (orange) from sampling 100,000 sequences belonging

to the set {aa+ b+}. Both sample times increase linearly with the sequence

length. Though the sample time per sequence is always lower for the NHMM,

the NHMM build time also increases with sequence length resulting in a lower

amortized sample time (dotted lines) for factor graphs as the sequence length

increases. 74

xiv

www.manaraa.com

5.6 Inferring Relational Constraints. Relational constraint sets are inferred from

real data using multiple-Smith-Waterman sequence alignment. Shown are the

structural patterns inferred for the chord, pitch, rhythm, and lyric sequences

in Twinkle, Twinkle, Little Star. Because the song is aligned against itself,

each axis represents the song sequence (top to bottom, left to right). 75

5.7 Horizontal and Vertical Structure. Shown are four parallel sequences (chords,

pitches, rhythms, and lyrics) that exhibit both horizontal structure—each fully

satisfies Markovian constraints—and vertical structure—each fully satisfies

binary relational constraints, frequently in the same sequence positions as with

relational constraints in other sequences. Boxes of the same color are used to

illustrate subsequences which position-by-position are constrained via binary

relational constraints to be equivalent. Dark red boxes reflect binary relational

rhyming constraints. Not labeled is the pattern of rhythmic repetition every 2

measures. 75

6.1 Pop* Overview. A high-level depiction of the process by which Pop* composes

new music. The system is inspired by social media posts that appeal to its

aesthetic. This inspiration guides the training of generative models through a

targeted subselection of available lyrics and lead sheets for training. Generated

artefacts are output on condition that they pass an intention-driven self-

evaluation. 91

6.2 NHMM for Binary Constraints. Shown is a NHMM. Each column represents

a position in the sequence to be generated. Transitions between columns are

derived from the transition probabilities in the NHMM’s underlying Markov

model. This NHMM is built from a DFA that implements the binary constraint

requiring the first and fourth positions of a sequence rhyme. The DFA adds

automaton state sensitivity to the Markov states as detailed in [13]. 94

xv

www.manaraa.com

6.3 Graphical HBPL model. This graphical model reflects the dependencies between

subconcept models in Pop*’s HBPL model for lyrical music composition. . . 98

6.4 Learning Structure. For each novel composition, Pop* chooses an existing song

(in this case Twinkle, Twinkle, Little Star) after which to model structural

patterns of repetition. Pop* uses a multi-Smith-Waterman alignment with a

genetically trained scoring function to find structure in (from left to right)

chords, pitch, rhythm, and lyrics. 100

6.5 External Artifact Representation. Pop*’s creative process results essentially in

a pop lead sheet (colored boxes highlight structural patterns of repetition).

With regards to this composition, Pop* wrote: “I spend a lot of time thinking

and reading about being in love, and I read this tweet from my friend Joel

Alcaraz posted Tuesday, June 12, 2018 at 6:34 PM: ‘It’s interesting being in

love with a person, I told Ashley my love for him is like dancing on the edge

of a cli↵ always feeling a sense of trepidation before the grand leap into his

world. But in the end no matter my fear I make a leap of faith. Is that what

love is? ’ It got me thinking about fear and love themes and I couldn’t help

but write this song: ‘And I think I am just a lie ‘Cause when you find yourself

behind And I think I am just a lie’. At the beginning it was fear and love,

however it really wound up with more of a deception and negative emotion

theme. I hope that you like it.” This composition rated highest overall in an

external evaluation of 12 randomly selected Pop* compositions. 106

xvi

www.manaraa.com

List of Tables

1.1 Survey of Existing Approaches to Structured Music Generation 4

3.1 d-order NHMMs with Floating and Dynamic Constraints for Solving the DBTB

Problem . 41

4.1 Features for a music sequence event . 50

4.2 Generalizability. (Top) Shown are average F-scores for training and test sets

resulting from a 5-fold cross-validation on a 5-song dataset (1000 generations).

(Bottom) Results aggregated from 2 of the 5 cross-folds in which the holdout

song is of simpler composition (Twinkle, Twinkle and Over the Rainbow).

Results suggest that even with limited training, generalization is possible,

particularly when generalizing to compositions with complexity less than or

equal to that represented in the training set. 60

6.1 Emotion topics. Scores for this subset of the default topic set for Empath [28]

are used to find tweets of interest that are emotionally charged. 100

6.2 Results for Evaluation Based on Artefacts. Shown are results based on the

average ratings for each song. Columns correspond to survey questions 1

through 7. For each result is shown the average musicians’ rating in italics

followed by the average of all ratings. “Best Song” is the song with the highest

overall rating score across all participants (shown in Figure 6.5). 111

xvii

www.manaraa.com

6.3 Familiarity Bias. Shown are the scores separated according to participants’

answers to survey question 14 (familiarity with study designers). For each

category is shown the average over all responses for each question as well as the

highest individual average song scores for each of survey questions 1 through

7. With few exceptions the system was rated as more creative by those who

are familiar with the system designers. 112

6.4 Results for Evaluation Based on Process. Shown are average scores for survey

questions 8 through 12, broken down by demographic. 113

xviii

www.manaraa.com

Chapter 1

Introduction

Computational creativity (CC) is “the philosophy, science and engineering of com-

putational systems which, by taking on particular responsibilities, exhibit behaviours that

unbiased observers would deem to be creative” [18]. Coined “the final frontier” of artificial

intelligence, CC aims at developing systems that possess a spectrum of intelligence abilities

as well as autonomy to exercise these abilities in generating creative artefacts [36].

As a subfield of CC, musical metacreation (MuMe) focuses on developing computational

systems that exhibit musical behaviors that unbiased observers would deem to be creative

[9]. Such behaviors can include improvisation, arrangement, and composition of new music.

These behaviors can be demonstrated in both live and non-live settings in a variety of musical

genres1.

Automated music composition in particular has become a problem of increasing interest

in our society. Many industrial entities have shown interest in developing models to represent

the way that people think about music for purposes of improving recommendation systems,

music information retrieval systems, chorus-detection algorithms, and music generation

systems. Automated music composition has also been a point of interest for creating music

to accompany film scores (including, e.g., YouTube videos) and procedurally generated video

games.

Despite wide-spread interest and wide-spread attempts to meet these demands, one of

the specific challenges that remains is the creation of music that exhibits global structure

1Our focus throughout this dissertation is on lyrical, sectional-form music in the 20th and 21st century
Western pop, rock, and show tune genres. However, the approach taken might be applied with success to
other genres.

1

www.manaraa.com

[35, 72]. Global structure—by which we refer to repetitive structures such as recurrent

musical motifs, sectional-forms in music (e.g., AABA or verse-chorus structure), and rhyme

schemes—represents a fundamental characteristic of music generally and of successful music

in particular [57]. Global structure poses a challenge for many traditional generative sequence

models—including Markov models and recurrent neural networks—because these models are

explicitly designed on the premise that what comes next is a function of its immediate context.

Although this works well to create local cohesion, a series of such (stochastic) decisions causes

generated sequences to wander aimlessly on a global scale. This has also been called the

long-term dependency challenge [15].

Recent works have attempted to address this challenge. Non-homogenous Markov

models (NHMMs) [59] generate sequences with arbitrary structure by imposing constraints on

a Markov process to force the model to generate specified states at certain positions. Factor

graph models impose regular constraints (i.e., constraints that can be represented using

regular languages) by combining an automaton representing the constraints with a Markov

model [62]. Multi-valued Decision Diagrams (MDDs) can be used to model a combination

of Markov and regular constraints [66]. All of these solutions are able to sample structured

sequences with exact probabilities.

A significant shortcoming of these models, however, is that they assume either unary

constraints (i.e., constraints that apply independently at independent positions) or regular

constraints. To impose global repetitive structure requires a di↵erent kind of constraint,

a relational constraint that is satisfied as a function of states at multiple interdependent

positions. We at times call these dynamic constraints because the exact manner in which

they are satisfied (e.g., the rhyme group for a particular couplet) cannot be determined

until runtime. While these types of relational constraints can be simulated using unary

constraints [2], doing so requires the manner in which a relational constraint is satisfied to be

defined a priori. This equates to the model only being capable of representing a significantly

smaller subset of the set of viable solutions.

2

www.manaraa.com

Relational constraints in general cannot be represented using regular languages (e.g.,

the language L = {ww : w 2 {a, b}⇤}, representing a repeating motif w, is not regular).

For finite-length sequences relational constraints can be represented using regular languages

(e.g., L = {ww : w 2 {a, b}n} where n is a finite number). This is generally an impractical

solution, however, due to the challenge of implementing the regular language. Although

regular languages for relational constraints can often be represented simply in set notation,

its implementation as an automaton is more involved. A regular language over alphabet

⌃ used to represent a relational constraint for sequences of length n represents a language

whose size is O(|⌃|n) and the associated automaton will generally have a unique path for each

sequence belonging to the language. Hand-crafting such an automaton does not represent a

viable solution and automating the creation of such an automaton is a non-trivial detail of

being able to use regular constraints to represent relational constraints.

Another challenge missing from these model definitions is how constraints (whether

unary or regular) for these models are derived. For the purposes of merely automating music

generation it may be acceptable to manually construct constraints, but for the development

of autonomy (a fundamental characteristic for MuMe and CC) this hand-crafting represents a

significant way in which the designer’s “fingerprints” detract from the potential originality of

the system. For a system to be deemed autonomous, the structure represented by relational

constraints would ideally be learned and chosen by the system, just as learned and chosen as

the actual content or instantiation of that sequence that fulfills the structure.

In short, the problem that remains to be solved is the creation of novel music that

learns and exhibits both local cohesion and dynamic global structure. In our survey of music

composition models we found systems that possessed some of these abilities, but none that

completely possessed all of them (see Table 1.1).

The Racchmaninof algorithm [15] quite nearly addresses the problem of generating

both local and global structure. This algorithm learns patterns of multidimensional repetition

using the previously published maximal translatable patterns method [49]. The patterns

3

www.manaraa.com

Local Structure Global Relational Structure
Paper Year Learns Exhibits Learns Exhibits

Pachet et al. [59] 2011 Yes Yes No No
Papadopoulos et al. [62] 2015 Yes Yes No No
Roy et al. [72] 2016 Yes Yes No Yes
Jaques et al. [35] 2016 Yes Yes No No
Perez and Régin [66] 2017 Yes Yes No No
Collins and Laney [15] 2017 Yes Partial Partial Partial

Table 1.1: Survey of Existing Approaches to Structured Music Generation

learned using this process are used to create long-term repetition in novel music through

a sort of “copy and paste” method. Repetitive phrases are generated using a Markov

process, but the Markov property is not guaranteed in joining these phrases. This results in

intermittent failings in local structure which is manifest in poor voice-leading and unusual

chord superpositions [15]. The approach taken in this method was designed for non-lyrical

structured (classical) music generation. The method used for learning structure caters to

finding musical structure, and its extension to finding structure for lyrics is not readily

apparent. For these reasons we could not compare our method and the Racchmaninof method

directly.

Because none of these systems possess the desired abilities, we do not try to demonstrate

improvement on existing systems in the sense of doing better on a given task. Rather we

are improving on existing systems by implementing functionality that they do not currently

possess. We propose that, as it contributes to creativity in computational systems for music

composition, local and global structure can be jointly learned and implemented using multiple

Smith-Waterman self-alignment and relational constraints in non-homogenous Markov models.

Our purpose in this dissertation is to demonstrate this thesis.

In Chapter 2 we demonstrate how the music composition process can be decomposed

into human-level subconcepts for e�cient learning. We use hierarchical Bayesian program

learning (HBPL) to model this decomposition which will enable the system to learn the

4

www.manaraa.com

concept of structure and the concepts needed to instantiate structure independently. To our

knowledge this is the first application of HBPL to computational creativity.

In Chapters 3 and 5, we present relational constraints, demonstrate their expanded

capabilities with respect to unary constraints, and show how they can be implemented in

NHMMs to model sequences exhibiting global structure. Chapter 3 focuses on implementing

relational constraints within the Markov window. Chapter 5 focuses on their implementation

outside the Markov window.

In Chapter 4, we review the multiple Smith-Waterman (mSW) self alignment algorithm

for learning and modeling relational constraints from data.

In Chapter 6, we use relational constraints in NHMMs and mSW to implement a

MuMe system for composing lyrical, sectional-form lead sheets that autonomously learns

and generates local and global structure. We assess the creativity of this system, taking into

consideration the impact of structure and autonomy on creativity.

The system demonstrated in our final chapter combines the elements of NHMMs and

mSWs in a CC system as a demonstration of our thesis that local and global structure can

be jointly learned and implemented for generation of creative artefacts by computational

systems in music composition. The field of CC values contributions that refine what is deemed

necessary for a system to be creative [21]. The field also values the demonstration methods

by which these criteria can be e↵ectively implemented and assessed in computational systems

[38]. Given these values, our work represents three significant contributions to the field of

computational creativity:

1. We have presented a novel method for learning global relational structure (an essential

aspect of domain knowledge) from creative artifacts in sequential data domains for the

purposes of developing an autonomous understanding of structure within the domain.

2. We have presented a novel method for generating creative artifacts in sequential data

domains that exhibit local structure and global relational structure.

5

www.manaraa.com

3. We have designed, implemented, and assessed the creativity of a novel system for

composing novel, lyrical, sectional-form music that exhibits a spectrum of creative

characteristics including being generative, using knowledge representation, exhibiting

intentionality, possessing an aesthetic, leveraging domain knowledge, having autonomy,

and being self-evaluative.

Our work also represents two significant contributions to the field of machine learning

in computer science (CS), which values the development of algorithms that can learn from

and make predictions on data:

1. We have presented a novel method for learning global relational structure from sequence

data.

2. We have presented a novel method for generating sequences that exhibit local structure

and global relational structure.

These contributions to the field of CS are applicable across domains in problems that

deal with sequential data. For example, relational structure has relevance in problems such

as part of speech agreement in natural language processing and in secondary and tertiary

protein structure analysis in bioinformatics.

6

www.manaraa.com

Chapter 2

Computational Creativity via Human-Level Concept Learning

This paper was published in the proceedings of the 2017 International Conference on

Computational Creativity

2.1 Introduction

People possess the ability to learn and combine concepts they already know to understand and

even create new concepts. As an example, many pedagogical models (e.g., [27]) teach children

to read by systematically mastering and combining simple concepts: symbols represent

sounds; symbols are read left to right; sounds are combined to form words; periods delimit

phrases; sentences wrap to subsequent lines, etc. This process of hierarchical learning is at

the heart of a branch of machine learning called human-level concept learning. Human-level

concept-learning is characterized by three fundamental ideas [42]:

• Compositionality - observations are constructed through a combination of parts

• Causality - capturing abstract representations of the causal process that produces an

artefact

• Learning-to-learn - parameters, constraints, parts, etc. are learned from training with

related concepts and then applied to learning novel concepts

Hierarchical Bayesian program learning (HBPL) describes a framework that models

human-level concept learning. This framework has recently been shown to be extremely

e↵ective (better even than deep-learning algorithms) in one-shot classification, parsing, and

7

www.manaraa.com

generation of hand-written characters [42]. The HBPL model for hand-written characters

works by factoring a joint probability distribution over characters into a product of

conditional distributions,

P () = P ()
Y

i=1

P (ni|)P (Si|i, ni)P (Ri|S1, ..., Si�1), (2.1)

where each conditional distribution is a model of a subconcept : P () models the number of

strokes per character; P (ni|) models the number of substrokes for the ith stroke for a character

with  strokes; P (Si|i, ni) models the ith stroke with ni substrokes; and P (Ri|S1, ..., Si�1)

models the relation of the ith stroke to the previous strokes. Some of these models are

further decomposed. This process of decomposition allows the system to empirically learn

subconcepts in order to learn and generate new character types.

In this paper we investigate concept learning as a tool for building computationally

creative systems. In particular, we find that the HBPL model provides a powerful framework

for producing novel, typical artefacts that include elements of surprise by virtue of its wide

range of expression.

As a proof of concept, we demonstrate the application of the HBPL model to the

problem of lyrical pop music composition; however, the principles are readily applicable in

other domains. Lyrical pop music is an ideal subject insofar as it naturally decomposes into

multiple subconcepts, each of which can be further factored. The system we describe also

demonstrates how existing models can be incorporated in defining subconcept distributions,

using the specific example of Pachet et al.’s constrained Markov model [59].

2.2 Modeling with HBPL

The most significant challenge to the HBPL model is deciding how and how far to factor the

joint distribution. Bayes’ theorem suggests that the factoring is irrelevant: any factoring

8

www.manaraa.com

should reproduce the joint when terms are multiplied:

P (A,B) = P (A|B)P (B) = P (B|A)P (A).

However, in practice we are only ever able to approximate distributions. Furthermore we

at times make unproven independence assumptions to increase the power of our models (as

discussed below). The factorization therefore leaves some “fingerprints” on the artefacts it

produces according to the extent that each of the factors is accurately modeled.

Given that the space of possible artefacts is essentially infinite for many domains,

it can be challenging to accurately train models for each subconcept given the relatively

few artefacts that have actually been created. But often an approximation is su�cient to

get a reasonable, working model. That we must use approximate distributions encourages

the use of a modular framework for a few reasons. First, a modular framework a↵ords

the metacreator the opportunity to improve upon or substitute alternative approximative

distributions for subcomponents. Second, multiple approximations can be combined to create

improved approximations.

Depending on the complexity of the artefact class, the decision of how to factor the

joint distribution can have significant impact on the power of the model. Some factorings

generate subconcept models that may be easier to approximate. Some factorings may lend

themselves to more reasonable independence assumptions. Choosing a good factorization

often requires a deep understanding of the artefact domain.

For relatively simple artefacts, the decision of how to factor the joint is more straight-

forward. For example, consider just a few of the independence assumptions that Lake et al.’s

model makes about hand-written characters [42]:

1. The number of substrokes per stroke, though dependent on the number of strokes, is

independent from the number of substrokes in previous strokes and from the stroke-order

position of the current stroke.

9

www.manaraa.com

2. A substroke identity (i.e., shape) depends on the stroke-order position and the number

of substrokes in the current stroke, but not directly on the total number of strokes in

the character nor on the substroke identities of any but the directly previous substroke.

3. How strokes connect to previous strokes is independent of the number of strokes,

substrokes, or substroke identities.

Initially these all seem like very reasonable simplifying assumptions, especially when consid-

ering how well the model performs. However if hand-written characters were more widely

considered and utilized as an art-form, there may be some disagreement about how accurate

these assumptions really are. Furthermore, the greater disagreements would likely come from

what this choice of factoring says about the intuition behind how a character is generated:

first randomly select a number of strokes ; then select a number of substrokes n for each of

those strokes based on ; select the substroke shapes based on n and ; and finally select the

relationship between strokes. For most non-artistic character implementers, there is nothing

wrong with this intuition. However, a calligrapher might feel that generating a new character

really starts with choosing a substroke shape or a relationship between strokes. Note that

the HBPL model could easily be adapted to model either of these alternative intuitions; but

more importantly it highlights the debate of whether or not it is important what the model

is doing as long as it appropriately classifies and generates character types.

In contrast, consider some potential independence assumptions and intuition repre-

sented in a model of lyrical compositions:

1. The structure, harmony, melody and lyrics are all independent of the inspiring source,

given the intention.

2. The pitches of the melody are dependent on the harmony.

3. The number of syllables in the lyrics are dependent on the number of notes in the

melody.

4. The lyrics are independent of the harmony, given the melody.

10

www.manaraa.com

There are likely to be disagreements over some aspects of this factorization, reflecting

philosophical biases of individual artists. Similar debates would arise, for example, in asking

song-writers, “which do you write first: the lyrics or the melody?” Or asking story-writers,

“which comes first: the characters or the story?” The fact remains that the same artefacts

are produceable by multiple factorizations and the majority of those who appreciate the

creativity of a song or a story do so without any knowledge of which factorization created

it. These debates about how the model should be factored are the very same debates in

which artists themselves engaged. By requiring the metacreator to precisely define how the

joint should be factored, the HBPL model focuses attention on these debates and represents

a computational framework in which di↵ering perspectives can be readily compared and

evaluated. For a discussion of di↵erent philosophies of lyrical composition and how they are

represented as factorizations of the joint distribution over lyrical compositions see [7].

2.2.1 Composition

Analogous to equation 2.1, we define the conditional distribution on compositions �, given

an inspiration ◆, as follows,

P (�|◆) = P (⌫|◆)P (⌧ |⌫)P (⌘|⌫, ⌧)P (µ|⌫, ⌧, ⌘)P (�|⌫, ⌧, µ),

with the following definitions:

P (⌫|◆) = distribution over intentions ⌫ given ◆,

P (⌧ |⌫) = distribution over structure ⌧ given ⌫,

P (⌘|⌫, ⌧) = distribution over harmony ⌘ given ⌫ and ⌧ ,

P (µ|⌫, ⌧, ⌘) = distribution over melody µ given ⌫, ⌧ , and ⌘, and

P (�|⌫, ⌧, µ) = distribution over lyrics � given ⌫, ⌧ , and µ.

Although this factorization is dependent on the domain of lyrical composition, there

are strong cross-domain parallels for many of the factors, which we will examine. This

11

www.manaraa.com

factorization of the distribution over compositions makes several independence assumptions

which are discussed by Bodily and Ventura [7]. Given our factorization decisions, we generally

find that the learned distributions broadly agree with musical intuition about how each of

the subconcepts is defined as discussed in figure captions.

Intention, P (⌫|◆)

Intention can be defined as the objectives which influence the creation of an artefact and can

address several di↵erent facets [3]:

• Thematic intention - the semantic purpose of the artefact (e.g., subject, emotion)

• Cultural intention - the sociocultural context for the artefact (e.g., society, language,

era, genre)

• Structural intention - the target organization or arrangement of an artefact (e.g.,

technique, rhyme scheme, meter)

Whereas intention ⌫ represents what/how we want to communicate, the inspiration

◆ represents the inspiring source for ⌫ or why we want to communicate ⌫. Although many

creative systems model intention (e.g., via a fixed intention, a user-defined intention, or

randomly selecting an intention), a major advantage to the HBPL model is that we can

explicitly condition the intention for an artefact on an inspiration. We discuss inspiration

more below.

In our working lyrical composition example, we use a randomly selected thematic

intention. Though several of the remaining subconcept models are conditioned on ⌫, it is

only explicitly discussed in relation to P (�|⌫, ⌧, µ). We include it elsewhere as a reminder

that intention can and should influence creativity wherever possible. We will assume that

conditioning on ⌫ is elsewhere accomplished by conditioning training on data representative

of ⌫ and leave a deeper exploration of its implementation for future work.

12

www.manaraa.com

Structure, P (⌧ |⌫)

In many domains of creativity structure can be thought of hierarchically. For example, in a

computer game the global structure may describe aspects of the flow between levels, but the

levels themselves also have significant substructural elements that are intuitively independent

from the global structure. We can thus factor our model of structure ⌧ as

P (⌧ |⌫) = P (⇣|⌫)P (�|⌫, ⇣)

where

P (⇣|⌫) = distribution over global structure ⇣ given ⌫ and

P (�|⌫, ⇣) = distribution over segment structure � given ⌫ and ⇣.

Global structure defines the boundary and relationships between subparts of an artefact.

Examples might include the abstract sequence of plot line elements in story writing (e.g.,

“hero cycle” vs “tragedy”) or the proportions of di↵erent abstract food groups in recipe

generation (e.g., “chili” vs “sandwich”) (e.g., [52]). In lyrical pop music, these subparts are

readily apparent in the sequence of verses (V) and choruses (C) (which define large-scale

repetitions in one or more musical viewpoints) and intros (I), outros (O), and bridges (B)

(generally not wholly repeated). We refer to a subpart in our model as a segment and its value

(e.g., “verse”) as its segment type. A global structure for lyrical composition is a sequence of

segment types ⇣ = (⇣1, ..., ⇣n) with arbitrary length, where ⇣i 2 {I, V, C,B,O}. We define |⇣|

as the number of segment types in ⇣.

There are several ways to approximate P (⇣|⌫). One severely limited approximation is

a fixed structure (e.g., I,V,C,V,C,B,C,O). Despite the range of possible compositions that are

uncomputable by this approximation, this limitation would likely be overlooked if enough

variation exists in other subcomponent models.

A second approximation is a distributional model which learns a multinomial distri-

bution of possible structures from a corpus of composition artefacts (e.g., see Figure 2.1).

13

www.manaraa.com

Figure 2.1: A visual representation of a possible probability distribution over global song structures
composed of verses (V), choruses (C), intros (I), outros (O), and bridges (B).

The disadvantage to the distributional model is that it can only produce structures seen in

training.

A third, more powerful approximation uses a constrained Markov model. This model

factors P (⇣|⌫) into a distribution over the number of segments in a song, P (|⇣|), and a

single-order Markov model for sequences of segment types:

P (⇣|⌫) = P (|⇣|)P (⇣1)
|⇣|Y

i=2

P (⇣i|⇣i�1)

Note that an unconstrained, unsmoothed Markov model for P (⇣i|⇣i�1) provides no guarantee

that a sequence of length |⇣| can or will be generated, nor that the sequence will end naturally

(e.g., with an outro). With Pachet et al.’s constrained Markov model we can constrain

the length and the way the sequence ends. This modifies the way P (⇣|⌫) is factored by

conditioning ⇣i on both i and ⇣i�1:

P (⇣|⌫) = P (|⇣|)P (⇣1)
|⇣|Y

i=2

P (⇣i|i, ⇣i�1)

When generating, a length is sampled from P (|⇣|) and a constrained Markov model for

the sampled length is constructed from the unconstrained model P (⇣i|⇣i�1) with the added

14

www.manaraa.com

Figure 2.2: A visual representation of a possible probability distribution over the number of
segments per song. Red corresponds to high probability, blue to low.

constraint that the song must end on an “end” token. This model is capable of creating

sensible structures of reasonable length that were not seen in the training data. Empirical

distributions for approximating P (|⇣|) and P (⇣i|⇣i�1) are shown in Figures 2.2 and 2.3

respectively.

A fourth possible solution for generating global structure would be to use a generative

grammar, learned or manually constructed, similar to what was done by Steedman [76].

In addition to global structure, we also model segment structure, P (�|⌫, ⇣). Though

this segment structure could be included as part of global structure, modeling this substructure

independently leverages principles of abstraction and polymorphism in order to facilitate

novel combinations of substructures. For example, in story-generation the global structure

might dictate something about the abstract content of each paragraph (e.g., protagonist

faces a trial, protagonist learns lesson, etc.), whereas the segment structure might define the

narrative style for the paragraph (e.g., dramatic visualization, retrospection, dialogue, etc.)

or add definition to the abstract content (e.g., the trial is a storm, the trial is losing a loved

one, etc.). Modeling these structures independently enables the model to combine narrative

styles with plot elements in ways that were not seen during training.

A segment in a composition (e.g., a verse) exhibits structure in the number of measures,

the number of syllables or notes per segment, which lyrics rhyme or repeat, and patterns

in harmony, pitch, or rhythm. We define a segment structure for lyrical composition as a

sequence of pairs � = ((l1, C1), ..., (l|⇣|, C|⇣|)), where li is the measure length of the ith segment

15

www.manaraa.com

Figure 2.3: A visual representation of a possible single-order Markov transition matrix for segment
types. Red corresponds to high probability, blue to low. The results largely agree with intuition.
For example, songs generally start with an intro and occasionally with a verse; songs generally end
with an outro and occasionally a chorus; and segments of the same type do not generally follow one
another.

16

www.manaraa.com

(corresponding to ⇣i) and Ci = {ci1, ..., cin} is a set of constraints which apply to the ith

segment.

Constraints define restrictions on di↵erent musical viewpoints in order to create

rhyme and repetitive motifs. A constraint, cij, is defined for a particular viewpoint v 2

{Harmony, P itch,Rhythm,Lyric}; with a condition d 2 {Equals,Matches,RhymesWith,

HasExpectation}; with a Boolean value t that defines whether the condition d needs to

be satisfied or unsatisfied in order to satisfy the constraint cij; and with m 2 [0, li) and

b 2 [0.0, bpmm) representing the measure and beat o↵set within the segment to which the

constraint applies (bpmm is the beats per measure of m). Each condition d has di↵erent

sub-variables and dimensionality:

• Equals conditions - cij = (v, d = Equals, t,m, b, S), where to satisfy d, the v token at

or near measure m, beat b must equal a v token in the set of tokens S if t is true and

must not equal any v token in S if t is false.

• Matches conditions - cij = (v, d = Matches, t,m, b, m2, b2), where to satisfy d the v

token at or near measure m, beat b and at or near measure m2, beat b2 within the

segment must be equal if t is true and not equal if t is false.

• RhymesWith conditions - cij = (v = Lyric, d = RhymesWith, t,m, b,m2, b2), where

to satisfy d the Lyric tokens at or near measure m, beat b and at or near measure m2,

beat b2 within the segment must rhyme if t is true and not rhyme if t is false.

• HasExpectation conditions - cij = (v, d = HasExpectation, t,m, b, s), where to satisfy

d the v token at or near measure m, beat b must have an expectation value above a

threshold s if t is true and not have an expectation value above s if t is false. This

constraint can be used to create a structure of expectation (as discussed by Meyer [50])

in order to model patterns of surprise and tension.

17

www.manaraa.com

Figure 2.4: A visual representation of an empirically derived probability distribution over song
segment lengths, conditioned on segment type. Red corresponds to high probability, blue to low.
The results largely agree with intuition: intros, outros, and interludes tend to be shorter; verses,
bridges and choruses tend to be longer.

Note that the attribute t could allow the system to learn how to intelligently break

rules. For example, the system could intelligently learn when not to rhyme when perhaps a

rhyme would normally be expected.

We define the distribution over segment structures � as

P (�|⌫, ⇣) =
|⇣|Y

i=1

P (Ci|li)P (li|⇣i).

To approximate P (li|⇣i) we can learn a probability distribution over segment lengths

conditioned on segment type (see Figure 2.4). Under the assumption that the constraint

set for a segment is independent of the segment type given its length, we can approximate

P (Ci|li) using a probability distribution over sets of constraints conditioned on segment

length (e.g., see Figure 2.5).

Much of the work that has been done with finite-length Markov processes with

constraints has required the user to specify the desired constraints in the composition process

(e.g., [2, 58]). This step of learning a model of constraints gives the system increased autonomy

to choose its own constraints and then generate artefacts to meet those constraints.

18

www.manaraa.com

Figure 2.5: A visual representation of an empirically derived probability distribution over song
segment rhyme structures conditioned on segment length. Red corresponds to high probability, blue
to low.

19

www.manaraa.com

With regard to modeling distributions for implicit features of an artefact (e.g., rhyme

constraints), empirically derived distributions can incur significant AI challenges. Artefacts

used for training often fail to label global and even segment structure, and therefore these

implicit features must be manually labeled or somehow inferred. Though our current system

learns structure from a small manually annotated dataset, our goal in future work is to use

sequence alignment over multiple viewpoints to infer global structure, finding regions of a

composition where harmony, melody, and lyrics all match (i.e., chorus) or where only harmony

and melody match (i.e., verse). Sequence alignment is also a promising approach to finding

segment structure (e.g., Hirjee and Brown [32] use alignment to detect rhyme scheme).

Having modeled the abstract structural representation, the system proceeds to model

the operational representation of the artefact (e.g., paint strokes, narrative text, recipe

ingredients, etc.). Whether modeled jointly or factored, the operational variables describing

the artefact composition are conditioned on the constraints imposed by the intention and

global/segment structure. Adapting Pachet and Roy’s definition of a jazz leadsheet [58], we

define the operational representation of a lyrical composition as parallel sequences of chords

⌘, notes µ, and lyrics � each with the same total duration. ⌘, µ, and � are defined in the

following sections.

Harmony, P (⌘|⌫, ⌧)

We define a harmony as a sequence of positioned chords ⌘ = (C1, ..., Cn) of arbitrary length.

Each positioned chord Ci = (Ii, di) has an identity Ii = (ri, qi, si), with root pitch ri 2 [0, 11],

chord quality qi (e.g., major, minor, dominant, etc.1), and bass pitch si 2 [0, 11]; and a

duration d 2 R>0. We normalize all root and bass pitches based on the labeled key signature

of the training instance at the harmony position.

1possible values for qi are defined according to the MusicXML 2.0 specification for chord qualities

20

www.manaraa.com

Figure 2.6: A subsection of a visual representation of an empirically derived single-order Markov
transition matrix for harmonic chord sequences for chorus segments. Red corresponds to high
probability, blue to low. As expected for songs normalized to the key of C major, there is high
probability that the song starts on a C major chord.

21

www.manaraa.com

We can factor P (⌘|⌫, ⌧) into independent sequential models regulating chord duration

and chord identity:

P (⌘|⌫, ⌧) = P (I1|⌧)P (d1|⌧)
nY

i=2

P (Ii|Ii�1, ⌧)P (di|d1, ..., di�1, ⌧).

In this formulation, the length of the sequence n is dynamically determined such that ⌃n

i=0di

equals the segment duration.

Deciding how to implement P (Ii|Ii�1, ⌧) and P (di|d1, ..., di�1, ⌧) is non-trivial. A few

possibilities for probabilistic sequence models include:

1. a fixed generator generates a fixed token, essentially ignoring conditioned variables,

2. a probability distribution over tokens, conditioned on segment type and/or beat position,

but not previous token,

3. a Markov model that generates a new sequence for each segment, independent of

segment type,

4. a set of Markov models - one model per segment type, and

5. a hidden Markov model - hidden states representing the segment type.

Each model has limitations that must be considered in the context for which it is intended.

Of these, our implementation uses model 4 for P (Ii|Ii�1, ⌧) (see Figure 2.6) and model 2 for

P (di|d1, ..., di�1, ⌧) (for a discussion of the relative musical merits of these models see Bodily

and Ventura [7]).

The decision to assume that duration and chord are independent, though potentially

erroneous, is deliberate. This is based on the reasoning that the strength of a probabilistic

model depends on the number of instances used to train the model. Each time a distribution

adds a conditional variable, the power of the model is reduced. We feel that the duration

and chord are su�ciently independent that the model strength recovered by assuming

independence outweighs the cost of ignoring any dependence between them.

22

www.manaraa.com

Figure 2.7: A visual representation of an empirically derived single-order Markov model for melodic
rhythm durations for verse segments in 4/4. Red corresponds to high probability, blue to low.

Melody, P (µ|⌫, ⌧, ⌘)

A melody is a sequence of positioned notes µ = (N1, ..., Nn) of arbitrary length. Each note

Ni = (pi, di) has a pitch pi 2 [�1, 127] (corresponding to a MIDI note value, -1 representing

a rest) and a duration di 2 R>0. We factor P (µ|⌫, ⌧, ⌘) into independent sequential models

regulating note pitch and duration:

P (µ|⌫, ⌧, ⌘) = P (p1|⌘)P (d1|⌧)
nY

i=2

P (pi|pi�1, ⌘)P (di|di�1, ⌧).

The length of the sequence n is dynamically determined such that ⌃n

i=0di does not exceed

the segment duration.

Of these models only pitch is conditioned on ⌘. To model P (pi|pi�1, ⌘) our imple-

mentation uses a single-order Markov chain of scale steps where the scale is defined by the

contextual harmony of ⌘. To model P (di|di�1, ⌧) we use a segment-specific Markov chain

of note durations (see Figure 2.7). Any of the probabilistic sequence models considered for

harmony could also be considered here.

Lyrics, P (�|⌫, ⌧, µ)

Several models of natural language generation (NLG) and in particular NLG in poetry

and music have been published [64]. As these models continue to improve, so will their

23

www.manaraa.com

application in lyrical composition. This demonstrates the robustness of the HBPL framework:

as improved submodels are conceived and implemented, the joint model is also improved.

We define lyrics as a sequence of stressed syllables � = (S1, ..., Sn) where |�|  |µ|. A

stressed syllable Si = (ti, pi, ✏i) has a text representation ti, a pronunciation pi (e.g., sequence

of ARPAbet phonemes), and a stress ✏i 2 [0, 2]. Each syllable Si 2 � corresponds to one and

only one note Nj 2 µ.

We factor P (�|⌫, ⌧, µ) to construct � as a sequence of lyric phrases (�1, ...,�n) where

the number of phrases n and the length l�i (in syllables) of each phrase are computed as a

function of the notes in µ and the rhyme constraints in ⌧ (i.e., we assume rhyme constraints

denote phrase endings):

P (�|⌫, ⌧, µ) =
nY

i=1

P (�i|l�i , ⌫, ⌧)P (l�i |µ, ⌧).

We empirically derive P (l�i |µ, ⌧). For P (�i|l�i , ⌫, ⌧) we create a probability distribution of

lyric templates conditioned on l�i which we use to sample templates. These templates, the

RhymesWith constraints of ⌧ , and ⌫ are given as input to an independent module that

generates novel, intentioned lyrics (see Bay et al. [3]). The module uses existing lyric segments

as syntactic templates for the creation of novel lyric segments. It intelligently selects and

replaces words based on 1) semantic similarity, 2) part-of-speech tag, 3) the cultural and

thematic intention of ⌫, and 4) the rhyme constraints imposed by ⌧ .

The advantage of using a template-based approach to lyrics generation is that it

maintains syntactic coherence. The primary shortcomings are that resulting lyrics provide

limited syntactic novelty from the training data and make no inherent e↵ort at providing

global semantic cohesion.

24

www.manaraa.com

A Note on Constrained Markov Models

Pachet et al.’s constrained Markov model requires that the length of the sequence be defined a

priori [59]. One short-coming in our current implementation is that because we have included

duration as part of the definition for both harmony and melody (rather than having each

chord or note representative of a fixed duration as demonstrated by Pachet and Roy [58]) the

length of a harmony or melody sequence depends on the durations of each sampled chord or

note. While this violates the Markov property and prevents us from being able to e↵ectively

use constrained Markov models, we favor the current implementation for reasons related to

data sparsity issues and the complexity of implementing a higher-order constrained (hidden)

Markov model. We hope in the future to overcome both of these hurdles and to shift to

“Markov-friendly” definitions for melody and harmony in order to more fully incorporate the

constraints defined in ⌧ using constrained Markov or constrained hidden Markov models.

2.3 Results and Discussion

We present results of implementing the HBPL framework in the context of a discussion of

some of the model’s implications. We trained submodels on a small manually annotated

subset of the Wikifonia leadsheet dataset.

2.3.1 Using the Joint as a Submodel

Because of the hierarchical nature of HBPL, a joint model of an artefact class (e.g., the model

of P (�|◆) just described) can serve as a submodel for other models. For example, we define

the joint probability distribution on inspirations ◆, compositions �, and renderings ⇢m as

follows,

P (◆, �, ⇢1, ..., ⇢m) = P (◆)P (�|◆)
MY

m=1

P (⇢m|◆, �).

25

www.manaraa.com

In essence we decompose a model of music creation to individually model the inspiration

for the artefact, the symbolic (abstract) representation of the artefact, and the concrete

rendering of the artefact.

Inspiration, P (◆)

Inspiration (i.e., the method for deriving intention) may be more closely related to an artist’s

or system’s “creative spark”. For example, observers often perceive greater creativity in

artefacts which in some way relate to them or to their culture [17]. In the joint probability

distribution on inspirations ◆, compositions �, and renderings ⇢m, we define P (◆) not as the

distribution over intentions, but as the distribution over inspiring sources for the intention.

In other words, not “what was the artefact intended to communicate?”, but “what was the

inspiring source for what the artefact intended to communicate?”

In general this demonstrates an unanticipated benefit of factorization: we can condition

on any variable that could be argued to influence the artefact’s creation. Many creative

systems implicitly define inspiration based on the corpora that the data trains on. With the

concept learning framework, we can model this attribute explicitly.

This represents an aspect not present in the model originally presented by Lake et al.

[42]: not only are we modeling what artefacts can be generated, but also why they are

generated. One possible way to model inspiration is to use an observer’s environment or

culture as an inspiring source. Research in electroencephalogram-based a↵ective computing

(i.e., reading brain waves) suggests that computers may soon be able to perceive an observer’s

emotional state beyond those of their human counterparts [80]. Alternatively, inspiration

could be modeled using sentiment analysis in a variety of online domains. We plan to explore

models of inspiration further in future research.

26

www.manaraa.com

Figure 2.8: Three measures of a sample composition generated using the HBPL framework. The
full composition and others can be found online at popstar.cs.byu.edu.

Rendering, P (⇢m|◆, �)

The example model P (�|◆) described above defines symbolic lyrical compositions (i.e., a

leadsheet). However, evaluating an abstract artefact generally requires a concrete rendering

of the artefact, whose distribution we model as P (⇢m|◆, �). As a proof of concept, we

implemented and trained the described HBPL model on a small corpus of hand-annotated

lyrical pop composition data. To concretely render compositions created using this model,

we generated both printed sheet music (e.g., Figure 2.8) and an MP3 audio recording2. Our

MP3 audio file features computer-sung lyrics accompanied by synthesized piano and bass

comping chords3.

Implications for Recommendation Systems

Lake et al. present the model of P () given in equation 2.1 as a submodel of the factoring of

the joint probability distribution on character types , tokens !m, and binary images Im [42]:

P (, ✓1, ..., ✓M , I1, ..., IM) = P ()
MY

m=1

P (Im|✓m)P (✓m|).

This means that given an image, the system can discover the motor program (i.e., abstract

character type) that most likely generated it. This allows the system to one-shot classify and

generate pairs of images that represent the same character type (specific examples of which

were not seen in training).

2audio recordings can be found at popstar.cs.byu.edu
3generated using Harmony Assistant (v9.7.0f) and Virtual Singer (v3.2)

27

popstar.cs.byu.edu
popstar.cs.byu.edu

www.manaraa.com

By analogy, a model for P (�) (similar to P (�|◆) just described) could be inserted into

a joint probability on composition types �, arrangements ↵m, and audio recordings ⇢m,

P (�,↵1, ...,↵M , ⇢1, ..., ⇢M) = P (�)
MY

m=1

P (⇢m|↵m)P (↵m|�).

The implications of this model are more broadly significant: the HBPL framework is capable

of inferring abstract representations of concrete artefacts, representations which more directly

define meaning, composition, and causality. This is significant for two reasons. First, in some

realms of creativity, simply deriving the abstract representation of an artefact is valuable (e.g.,

automatically transcribing sheet music from audio). Second, having an abstract representation

allows concrete artefacts to be compared according to symbolic, conceptual criteria (e.g.,

recommendation systems based on meaning, or in the case of music, harmony, melodic pitch or

rhythm, etc.). Though work has been done to approximate P (↵m|�) [4], e↵ective comparison

of artefacts hinges on the other terms in the factorization, P (�) and P (⇢m|↵m), which are

lacking.

2.3.2 Fitness and Self-Evaluation

The HBPL framework is designed to restrict the generation process in situ to produce only

meaningful artefacts (as compared to a generate-and-test procedure). As discussed by Ventura

[78], this “baked-in” self-evaluation mechanism has the added benefit of being able to explain

to some extent both the novelty, value, and motivation behind generated artefacts. Given

its ability to compute probabilities, the HBPL framework could thus also be potentially

leveraged as a fitness function for other types of generative models.

2.3.3 Big (Need for) Data

Any empirically driven model requires training on a dataset representative of the artefact

domain. Even if we had digital access to all of the compositions ever written, it would

represent an infinitesimal portion of the songs that could be written. This is a challenge

28

www.manaraa.com

in many machine learning domains. Unique to the pop music domain, however, is that

data is highly proprietary. What is available is extremely limited and of relatively poor

quality. Compared to natural language, artefacts in music generally require relatively complex

representations and relatively few possess the domain knowledge required to generate or

transcribe the needed data. Among those who do understand and use it, music formatting

can vary wildly and inexactly—creating additional challenges for a by-the-bit computer parser.

Computers will only learn to speak music as quickly as we either formalize and ubiquitize

the language of music or endow computers with AI tools to fill in the gaps on their own.

The particular challenge of accessing high-quality symbolic pop music datasets is

significant. There is a dearth of well-annotated resources for those interested in studying

any or all of the aspects of pop music composition. There is, however, much we can do to

improve the situation. First, we need to make resources that are available more accessible

(guitar tabs, lyrics sites, beatles). Second, we need to establish a better case for how society

and industries stand to benefit from computational pop music research in order to generate a

productive dialogue for the support and collaboration of those in possession of large pop music

datasets (sheet music sites, spotify, etc., asking for APIs, etc). Note that this is di↵erent than

asking them to simply give us their proprietary data. Third, we can do more to recognize

contributions of novel datasets.

2.4 Conclusion

HBPL is a powerful framework for accomplishing tasks in computational creativity. Using

principles of compositionality, causality, and learning-to-learn, such models are able to

e↵ectively learn and generate examples of complex creative concepts. Its probabilistic

framework lends itself well to modeling important aspects of creativity such as inspiration and

intention. The HBPL framework by nature compels researchers in domain-specific subareas

of computational creativity to engage in the debates that the artists themselves are having,

namely “how should an artefact be created?” and “does it matter?” To the extent that these

29

www.manaraa.com

challenges are e↵ectively addressed on the scale of defining and training subconcept models,

the HBPL model represents a useful framework for designing and assessing creative systems.

30

www.manaraa.com

Chapter 3

Floating and Dynamic Constraints in Non-Homogeneous Markov Models

3.1 Introduction

In many sequential domains, structure and meaning are created as the result of constrained

relationships between elements at disparate sequence positions. In proteomics, bonds between

amino acids at distinct positions are essential for protein folding. In natural language,

semantic cohesion is achieved by part of speech agreements. Musical motifs and patterns of

repetition are observed to increase the ease with which information is processed by the brain

[57]. Probabilistically modeling structured sequences is problematic for stochastic processes

including Markov models, which are commonly used for classification and generation in these

domains.

Constrained or non-homogeneous Markov models (NHMMs) [59] have been more

recently presented as a way of introducing more control, essentially representing sequence

modeling as a constraint satisfaction problem (CSP). By constraining against sequences

that are uncharacteristic of a particular domain, NHMMs are able to generate and classify

sequences more e�ciently and e↵ectively.

For the most part, NHMMs have been presented that are based on 1-order Markov

models [2, 62, 71]. In this form NHMMs exhibit significant limitations. First, because NHMMs

require the definition of constraints applied at specific positions, there is no leniency to allow

a particular constraint to be allowed across a range of positions. Such an ability would be

helpful, for example, for constraining semantic meaning in natural language phrases without

having to be picky about where it occurs. Second, because NHMMs operate solely using

31

www.manaraa.com

static unary constraints, many types of relational constraints cannot be e↵ectively modeled.

Dynamically defined relationship variables would be e↵ective, for example, in imposing bonds

between biological molecules, in forming rhymes, and in creating grammatic cohesion or

semantic relationships between words. Though some general comments have been made with

respect to implementing higher-order models (e.g., [59]), several significant advantages of

NHMMs—including those required to overcome the above-mentioned shortcomings—have

been overlooked and emerge only when considered in their higher-order implementations.

In this paper we demonstrate two new classes of constraints, floating constraints

and dynamic constraints, which aim to overcome the limitations of fixed-position and static

constraints in NHMMs. We e↵ectuate these constraints using d-order NHMMs (i.e., a

NHMM built from a d-order Markov model). Sampling sequences with dynamic and floating

constraints is theoretically possible using regular constraints in single-order models [13, 61,

62, 68]. However, whereas the computation time of NHMMs have been shown to grow linearly

in the length of the sequence to be generated, the same has not yet been shown in the regular

constraint model [13]. Furthermore, even with the use of regular constraint, the approach

demonstrated here is mandatory for any application of dynamic or floating constraints within

the Markov window.

We demonstrate three examples that utilize dynamic and floating constraints in

NHMMs: a lyric generation model with dynamic rhyming constraints and floating part-of-

speech (POS) constraints; a haiku generation model with floating semantic constraints; and a

prosodic rhythm generation model with floating stress and time signature constraints. In the

case of the lyric generation model, we include an empirical assessment of five higher-order

NHMMs with floating and dynamic constraints.

3.2 Methods

A finite-length NHMM M̃ is created given a finite length l, a trained Markov model M , and

a set of positioned constraints C. M̃ has the following properties:

32

www.manaraa.com

1. M̃ only assigns probability to sequences that satisfy C;

2. Sequences that satisfy C are assigned the same probability in M and M̃ up to a constant

factor.

M̃ is derived from M by replicating the transition matrix of M for each of l � 1 positions

and then imposing the constraints in C to modify the matrices at specific positions. The

CSP is made arc-consistent, meaning states are iteratively removed at neighboring positions

to ensure that all constraints are satisfied via any remaining solution. Probabilities are then

normalized to ensure remaining solutions are assigned the same relative proportion of the

probability density [59].

The properties and construction of M̃ hold true regardless of the order of M . M has

traditionally been presented as a single-order Markov model M1 which generates a sequence

according to the probability function P (X1, · · · , Xn) = P (X1) · P (X2|X1) · · ·P (Xn|Xn�1).

However, M may just as easily be a d-order Markov model, Md, which generates a sequence

with a longer memory such that P (Xi|X1, · · · , Xi�1) = P (Xi|Xi�d, · · · , Xi�1). The fact that

the order of M does not a↵ect the NHMM construction falls out immediately from the

observation that Md can by created using a single-order Markov model on an alphabet of

d-grams [62]. More precisely this means changing the finite state space A1 = {a1, · · · , an}

for M1 (where each element ai 2 A1 is a raw token) to a state space Ad = {P1, · · · , Pm}

where each element Pj 2 Ad represents a d-length sequence of tokens Pj = (s1, · · · , sd) (where

si 2 A1). Thus a transition j) k in Md represents a transition from sequence Pj to sequence

Pk where s2, · · · , sd in Pj and s1, · · · , sd�1 in Pk are identical subsequences.

We thus implement a d-order NHMM, M̃d, following the same construction presented

by Pachet et al. [59] for building a single-order NHMM M̃1 with the exception that we

construct from Md rather than M1. This modification requires no additional modification to

the procedure for normalizing probabilities.

Note that in sampling an element sequence (X1, · · · , Xn) from either Md or M̃d, all

tokens s1, · · · , sd in X1 and the final token sd in each Xi for i > 1 are concatenated to form

33

www.manaraa.com

Figure 3.1: A 3rd-Order word-level Markov model. The model has been trained on the phrases “once
I saw a bear with hair” and “once I saw a cat with hair”. Since each word is a single syllable, this
example also represents a syllable-level model. Each element in this model is a 3-length sequence of
tokens and transitions are between sequences that overlap by all but one token. Note that though
an element sequence from this model will have length 5, the generated token sequence will have
length 7 (i.e., element sequence length + order - 1).

the generated token sequence (e.g., see Figures 3.1 and 3.2). Thus a d-order NHMM of length

l generates sequences of length (d+ l � 1).

Optimizing NHMM Construction

For n distinct tokens (e.g., in A1), the number of potential distinct elements in M̃d is |Ad| = nd,

and the number of possible transitions (copied l � 1 times) is thus (l � 1)n2d. Therefore

increasing d substantially increases both the time and memory required to implement M̃d. We

present two important optimizations for implementing Md which improve on the algorithm

presented by Pachet et al. [59]. Given the sparsity of these matrices, we assume that matrices

are implemented as a map that includes only non-zero transition probabilities.

First, whereas Pachet et al.’s algorithm suggests initializing a priori new matrices

Z(i) = Md (i.e., the transitions of Md) for i 2 [1, · · · , l� 1], it is far more e�cient to initialize

these matrices one at a time, starting from empty and only adding non-zero transition

probabilities j) k to Z(i) for which j is reachable given Z(i�1). For example, if there is only

one reachable state, Pj , given Z0 (i.e., the prior probabilities of M), then Z(1) need only add

transitions in Md from Pj rather than copying all of Md (L� 2 times over) and then pruning

all transitions except those from Pj.

34

www.manaraa.com

Figure 3.2: A 3rd-order NHMM of length 4. This model is built from the Markov model in Figure 3.1
and generates sequences of length 6. States marked with a white ‘X’ are pruned due to the length
constraint (i.e., transitions through these states do not result in element sequences of length 4).
States marked with a gray ‘X’ are pruned due to the addition of the C3 POS constraint. This
constraint is an example of a floating constraint in that the POS constraint is e↵ectively satisfied by
any satisfying token appearing at sequence positions 3, 4, or 5. States marked with a black ‘X’ are
pruned due to the further addition of the C4 rhyme constraint. The C4 constraint is an example of
a dynamic constraint in that the token constraint at sequence position 6 e↵ectively depends on the
token at sequence position 4. Grey transitions represent transition probabilities that are zeroed as a
result of applied constraints.

35

www.manaraa.com

Second, the addition of transitions j) k to Z(i) at each position i should be further

limited according to whether k satisfies all unary constraints and whether j) k satisfies all

transitional constraints relevant to position i.

Normalization proceeds as described by Pachet et al.. In solving the DBTB problem,

where viable paths are significantly reduced from applying constraints at even the first few

positions, we observed improvements in speed and memory of roughly 50x as a result of these

optimizations.

Floating Constraints

Higher-order NHMMs enable a class of constraints which we call floating constraints. In

essence this type of constraint allows unary (or other) constraints to be satisfied at any one

of several positions rather than at a specific position. For example, rather than constrain the

ith position of a phrase to be a particular POS, we can constrain the model such that any

token in the range of positions [i�d, i] must be a particular POS or such that the sequence of

tokens in the range of positions [i� d, i] must represent a particular meta-level POS, such as

a noun phrase. Floating constraints are useful for allowing the model to have more flexibility

in generation.

Floating constraints are made possible in higher-order NHMMs because a transition

j) k representing the transition from Pj to Pk is su�cient to determine whether the

(d+1)-length sequence represented by the overlap of Pj and Pk satisfies the floating constraint

(e.g., contains the requisite POS tokens)(see Figure 3.2).

An example of the application of floating constraints is in defining semantic constraints.

Barbieri et al. [2] define unary semantic constraints at fixed positions to achieve significant

improvements in generating semantically related poetry. By their own admission, this

approach has limited flexibility because of having to define unary constraints at specific

positions. Their idea of cardinality constraints (envisaged as future work) is itself an example

of a floating constraint.

36

www.manaraa.com

Floating constraints can also be used to not over-restricting syllable-level NHMMs

when imposing word-level POS constraints. Using a word-level Markov process Barbieri et al.

[2] are able to constrain according to word-level POS templates. For example, the word-level

POS template for the phrase “Yesterday, all my troubles seemed so far away” is denoted as

[NN, IN, DT, NN, PRP, MD, VB, NN]. Although we can impose the same constraints using a

syllable-level POS template (e.g., [NN, NN, NN, IN, DT, NN, NN, PRP, MD, VB, NN, NN]),

note that doing so reduces the expressiveness of our syllable-level model by up to a factor of

2l�1 insofar as we limit the model’s ability to determine the numbers of syllables per word

and words per phrase. One solution is to place POS constraints at only a subset of positions

(e.g., [NN, , , IN, DT, NN, ,PRP, MD, VB, , NN]), allowing the model to fill in the gaps.

This solution, however, still severely restricts the model’s expressiveness. It also requires

statically defining a sequence of POS tags allowed at each position, essentially limiting the

number of allowable POS sequences to one.

Floating constraints provide a means of imposing word-level POS templates without

sacrificing expressiveness and with the ability to allow multiple valid POS sequences. In

a syllable-level d-order NHMM, the (d + 1)-length syllable sequence deriving from each

transition j) k (e.g., “llama wearing polka-dot pajamas”) also represents a (d + 1)-

length syllable-level POS sequence (e.g., [NN,NN,VBG,VBG,NN,NN,NN,NNS,NNS,NNS]1).

A syllable-level NHMM can impose a floating word-level POS template constraint (e.g., “must

match [NN,VBG,NN(S)]”) over positions [i � d, i] to only allow transitions j) k whose

associated (d+ 1)-length syllable-level POS sequence matches the word-level POS template

of the constraint. In this way word-level POS constraints can be imposed without specifying

a precise position where they must be satisfied. Furthermore, multiple POS templates can be

included in the constraint to allow sequences to be validated by one of many alternatives (see

Figure 3.3). In this way sequences can be validated using many di↵erent word-level lexical

analyses (e.g., noun phrase classifiers).

1POS tags are those inferred by Stanford CoreNLP Toolkit [48]

37

www.manaraa.com

Dynamic Constraints

Higher-order NHMMs also enable what we call dynamic constraints. A dynamic constraint

allows a constraint’s definition to be determined at runtime as a function of elements at

neighboring positions rather than it being statically and independently defined a priori.

For example, Barbieri et al. [2] demonstrate the use of NHMMs to generate lyrics for a

song such that the last word in the first line is constrained to be a particular word (“today”)

and the last word in the second line is statically constrained to rhyme with that same word.

Using a dynamic constraint, the system is able to dynamically determine whether a particular

pair of words rhyme without needing to know the rhyme group of either word ahead of time.

A dynamic constraint is accomplished in higher-order NHMMs by considering whether

or not the d+ 1 length sequence deriving from the transition j) k represents a subsequence

of tokens where the tokens at the two dynamically constrained positions satisfy the desired

property (e.g., rhyme). This requires that the dynamically constrained positions must be

within d+1 positions of each other, thereby maintaining the Markov property (see Figure 3.2).

E↵ecting more distant rhymes requires high values for d and results in less stochasticity in

generated sequences. This makes dynamic constraints particularly well-suited for genres like

rap where rhymes are often closely situated.

Limitations of Dynamic Constraints

In many applications the dynamic constraints of interest relate elements at very distant

positions. Such dynamic constraints are not well-suited for the approach we have outlined

here. As d increases fewer satisfying solutions can be generated and solutions tend towards

replicating exact phrases from the training corpus. Papadopoulos et al. [61] demonstrate a

regular constraint solution to the problem of sampling exact phrases above a certain length

from training data. Regular constraints are also a viable alternative to increasing d solely for

the purpose of e↵ecting dynamic constraints [13].

38

www.manaraa.com

The examples shown below use values of d in the range 4 <= d <= 8. In these cases

we have elected to retain potentially exact phrases both for the sake of demonstration and

because we deem that there remains an important aesthetic value in repurposing existing

artefacts in novel problem domains (e.g., an objet trouvé). In fields such as computational

creativity these solutions represent a significant contribution in their own right [19].

3.3 Dynamic and Floating Constraint Examples

In each of the three following examples we demonstrate a unique advantage a↵orded by

dynamic and/or floating constraints in NHMMs.

3.3.1 Dynamic Relational Constraints in Lyrics

We demonstrate the use of dynamic constraints in the context of a lyric-generation problem

which we call the Down by the Bay (DBTB) problem. “Down by the Bay” is a traditional song

requiring improvisation of novel lyrics which conform with rhythmic, rhyming, and part-of-

speech (POS) patterns representative of the song’s characteristic structure. Incidentally this

task has been the focus of many studies in behavioral sciences and education [34, 40, 65, 70, 77].

After careful consideration of several prototypical solutions to the DBTB problem,

we define a set of constraints for solving the DBTB problem with a sequence of length l as

follows:

1. The word at position 1 must be ‘a’ or ‘an’2.

2. The lth syllable must be the last syllable in a word.

3. The rhythmic template for p must be one of the following: [011001], [0110101],

[01010010], [01101011], or [01010101010].

4. The first and last stressed syllables must rhyme.

21-based numbering is used throughout the paper

39

www.manaraa.com

5. If the rhythmic template for p ends with 0, then the second and last unstressed syllables

must also rhyme.

6. The syntax of the phrase must be that of a noun phrase.

Because there are variable satisfactory lengths for p and the length l for a NHMM

must be fixed a priori, we create a syllable-level NHMM for each rhythmic template, adjusting

constraint sets for each according to the corresponding template.

Note that constraints 4 and 5 are easily implemented using dynamic constraints

and constraint 6 is easily implemented using a floating constraint. The rest are also easily

implemented using fixed-position unary constraints.

In the models applied to the DBTB problem we apply a floating word-level POS

template constraint which spans the rhyming positions. We populate the constraint’s syntax

tree with POS templates derived from traditional DBTB solutions.

As training data for our DBTB models we used the Corpus of Contemporary American

English (COCA) [24]. To improve parsing we selected only complete phrases (as delimited by

any non-alphabetic or apostrophe characters) which had a maximum of 30 space-delimited

word tokens. POS tagging was performed using the Stanford CoreNLP Toolkit [48]. Sentence

pronunciation was inferred using word pronunciations from the CMU dictionary3 and the

CMUSphinx grapheme-to-phoneme converter [81]. Models were trained on each unique pro-

nunciation of the sentence, with each pronunciation being weighted in the model proportional

to the number of pronunciations for the sentence.

We trained five NHMMs (see Table 3.1). All but one found satisfying solutions. Each

model was trained on sentences whose syllable sequence length ls was d  ls  30. The

system, implemented in Java 1.8, trained with 24 cores and 256 GB of RAM for 5 hours and

43 minutes.

To evaluate the e↵ectiveness of higher-order NHMMs, we performed a qualitative

assessment of DBTB solutions generated by our models. We first obtained human-generated

3http://www.speech.cs.cmu.edu/cgi-bin/cmudict

40

http://www.speech.cs.cmu.edu/cgi-bin/cmudict

www.manaraa.com

“llama wearing polka-dot pajamas”
[NN,NN,VBG,VBG,NN,NN,NN,NNS,NNS,NNS]

“pirate advocating veggie diets”
[NN,NN,VBG,VBG,VBG, VBG,NN,NN,NNS,NNS]

Figure 3.3: Floating syntax constraints. Shown are two 10-syllable phrases (representing the
overlap of two states in a 9th-order NHMM) each with its syllable-level POS template (per the
Stanford CoreNLP Toolkit). The tree represents a floating word-level POS template constraint.
Each path through the tree represents a POS sequence that is valid per the constraint. Each
phrase (representing a Markov transition) is either kept or pruned according to whether or not its
syllable-level template (when identical consecutive tags are merged) has a valid path through the
tree. This is a floating constraint because the POS tags from the constraint are not imposed on
specific positions in the syllable-level template. Thus despite having di↵erent syllable-level POS
templates, both phrases satisfy the constraint via the same path (grey).

Table 3.1: d-order NHMMs with Floating and Dynamic Constraints for Solving the DBTB Problem

NHMM 1 NHMM 2 NHMM 3 NHMM 4 NHMM 5
NHM Order 4 5 5 6 8
NHM Length 3 3 4 3 4
Sequence Length 6 7 8 8 11
Stress Template [011001] [0110101] [01010010] [01101011] [01010101010]
Dynamic Rhyme
Constraint Positions

2&6 2&7 2&7, 3&8 2&8 2&10, 3&11

Floating POS
Constraint Positions

2-6 2-7 2-7 2-8 2-10

Training Sentences 3,892,039 2,654,884 2,654,884 2,051,040 1,239,850
Training Pronunciations 366,062,046 286,075,704 286,075,704 255,086,072 208,330,754
Solutions Generated 30 5 5 4 Not Satisfiable

Generated Example
“a dish of
pickled fish”

“a cot and a
chamber pot”

“a pillar that
was a mirror”

“a mouse or a rat
in the house”

n/a

Average Novelty 3.65 3.66 4.13 3.40 n/a
Average Rhyme 4.18 4.21 1.94 4.00 n/a
Average Rhythm 3.12 3.30 2.13 3.16 n/a
Average Amusement 2.53 2.39 2.06 2.48 n/a
Average Likability 2.51 2.66 2.17 2.82 n/a

41

www.manaraa.com

Figure 3.4: Qualitative evaluation. Results of 470 survey responses rating human- and computer-
generated solutions to the DBTB problem. Error bars represent standard error.

solutions by inviting university faculty and students to “come up with your own novel ending”.

We randomly selected 88 DBTB solutions (44 computer-generated and 44 human-generated).

We conducted 94 surveys in which participants were asked to rate five DBTB solutions

(randomly and evenly sampled from our mixed pool) on Likert scales for novelty, rhyme,

rhythm, amusement, and overall likability (each solution thus being rated an average of 5.34

times). Results are shown in Table 3.1 and Figure 3.4.

The top five highest-scoring computer-generated solutions, their scores (averaged over

the 5 criteria), and the NHMM that created them were:

• “a way out of the bay” - 4.04 - NHMM 1

• “a place in Chevy Chase” - 3.85 - NHMM 1

• “a sign of the decline” - 3.8 - NHMM 1

• “a scar shaped like a star” - 3.75 - NHMM 1

• “a stream that wound like a dream” - 3.74 - NHMM 2

42

www.manaraa.com

We found that the novelty scores of human-generated solutions outscored computer-

generated solutions by a margin of 0.25. The rhyme scores were also very competitive, with

the delta (0.38) being partially explained by our failure to consider the matching of syllable

onsets in multisyllabic words (e.g., “pillar”,“mirror”) in Model 3. We hypothesize that the

delta observed in the rhythm score may be due to the confounding variables of rhyme and

grammaticality. For example, the poor rhyming performance of Model 3 (the only model

with multisyllabic rhymes) may have carried over into the ratings for other aspects of Model

3 solutions. Likewise it seems a reasonable hypothesis that, although poor grammar does not

a↵ect rhythm, it may nonetheless be perceived to a↵ect the rhythm; however, we did not

include grammaticality in our assessment. The amusement and likability scores, with which

the computer struggled most, may have been a a↵ected by the genre-appropriateness of some

of the computer-generated solutions (e.g., “a flood of spurting blood”, “an orphan and an

abortion”) and would likely be improved if we had chosen a di↵erent training dataset.

3.3.2 Floating Semantic Constraints in Haiku

To demonstrate the generality of floating constraints, we designed and applied two di↵erent

syllable-level NHMMs on the COCA fiction corpus [24]. The first was a 5th-order NHMM of

length 13 with a nature-themed floating semantic constraint applied over the first 5 syllables.

The second was a 4th-order NHMM of length 14. In this model, we applied a floating

word-level POS template constraint (similar to those described for the DBTB models) over

the last 5 syllables of each line. Each line-specific constraint had a syntax tree populated with

word-level POS templates parsed from corresponding lines in a database of existing haiku.

We also imposed a beauty/earth-themed floating semantic constraint over the last

4 syllables using Mikolov et al.’s word2vec approach [51] to ascertain semantic relatedness

between words. In both models, each line was constrained to start and end with word-starting

and word-ending syllables. Of the two models, the first found several interesting objets trouvés

whereas the second generated novel compositions (see Figure 3.5).

43

www.manaraa.com

trees lifted themselves
up and snapped to attention

with seasonal fire

the trajectory
of the individual
nature and history

Figure 3.5: Haikus. These haikus are generated from syllable-level NHMMs with floating constraints.
(Left) An objet trouvé found using a 5th-order NHMM with a nature-themed floating semantic
constraint. (Right) An original haiku generated from a 4th-order NHMM with floating word-level
POS template constraints and a beauty/earth-themed floating semantic constraint.

Figure 3.6: Prosodic rhythm for lyrics. Given the lyric “No more monkeys jumping on the bed!”, we
used a 4th-order NHMM over rhythm tokens to generate prosodic rhythms like those shown here.
Stressed syllables are bold and notes in emphasized rhythmic positions are in parentheses.

3.3.3 Floating Stress Constraints in Prosody

For generating prosodic rhythm, we designed a 4th-order NHMM over rhythm tokens of

length 6 to generate suitable rhythms for the lyrics “No more monkeys jumping on the

bed”. We trained the model on lyric/rhythm sequences from the Wikifonia dataset. Given a

stress template of [111010101] (per the CMU pronunciation dictionary), the model imposes

floating stress constraints requiring 80% of syllable stresses to be matched appropriately to

emphasized rhythmic positions (one constraint over the first five syllables and another over

the last four syllables). The model also has 4/4 floating time signature constraints at all

positions (see Figure 3.6).

44

www.manaraa.com

3.4 Discussion

The number of satisfying solutions to any given problem fluctuates significantly as a function

of a model’s length, order, and the cardinality/severity of its constraints. In practice this

results in having to make compromises: adding constraints requires decreasing the order;

increasing the order requires decreasing the length; increasing the length requires lowering a

particular constraint threshold; and so on.

One ramification of this is a variation of the no free lunch theorem: di↵erent model

settings will generate a di↵erent subset of the ideal solutions. In our study we tried several

di↵erent permutations to find that which we felt worked best on average and which produced

a reasonable number of good solutions. But there are likely many more good solutions we

might have found via other permutations.

A second ramification of the need for compromise is that it presents several novel

challenges to be solved: how can we find the optimal parameters for length, order, and

constraints? Can constraints be prioritized or made more flexible so as not to over-prune

the model? Some of the answers to these questions may require domain-specific knowledge;

however, ideally we may find more generalizable solutions.

In this work we have demonstrated the implementation of higher-order NHMMs and

presented two new classes of constraints (floating constraints and dynamic constraints) that

are uniquely accessible to such models. We have presented several useful optimizations for

implementing NHMMs. We have explored the advantages of syllable-level models for text

generation. We have demonstrated the e�cacy of these findings in several domains, including

its application to the Down by the Bay problem.

45

www.manaraa.com

Chapter 4

Sequential Structure Inference Via Multiple Self-Alignment

4.1 Introduction

Human-level concept learning relies on the ability to model artefacts at increasing levels of

abstraction [42]. In visual imagery, pixels form strokes which form shapes which form objects.

In natural language, letters make words which make phrases which make sentences. The

ability to learn high-level features is critical to an e↵ective model of the domain, either for

discrimination or generation.

Often features of interest are abstract, that is they are not explicitly represented in

an artefact description. In poetry or lyrics, features such as rhyme scheme are not usually

labeled; however, even beginning readers are capable of identifying intentionally rhymed

phrasing [27]. In music, features such as verse-chorus segmentation and repeated motifs are

infrequently labeled but are nonetheless readily inferred by even non-musicians from what is

represented (e.g., chords, melody). This structure significantly relates to meaning [57], and

although audiences will find structure even where it was not intended, they readily express

criticism of artefacts in which they perceive little or no structure. Human-level reasoning

about artefacts and domains hinges on the ability to recognize structure within primitive

features (i.e., features that are labeled) from which abstract structural features can then be

inferred. Such features are helpful for evaluating, classifying, comparing, and/or generating

structured artefacts [14]. In addition, style-transfer and cross-domain translation of ideas is

better facilitated by the ability to elucidate abstract structural representation [45].

46

www.manaraa.com

Much related work exists to finding structure in sequential data. Meredith et al.

[49] discover patterns of multidimensional repetition using maximal translatable patterns

(MTPs). Collins et al. [16] follow up on this work with a pattern discovery algorithm called

SIACT to discover translational patterns in baroque keyboard works which they later also

use in extracting patterned repetitions in music [15]. Lattner et al. [43] use bootstrapping in

feed-forward neural networks to perform unsupervised melody segmentation. Other work has

approached the musical sequence segmentation problem using restricted Boltzmann machines

[44].

We present a novel approach to inferring abstract structural features that uses genetic

algorithms to determine viewpoint-specific scoring functions for structural sequence alignment.

The approach is readily applicable across domains where structure can be modeled in terms

of self-similarity (e.g., bioinformatics, natural language, and audio signal processing). As a

concrete example for the purposes of demonstration, we examine the inference of abstract

structure in lyrical, sectional-form music lead sheets, with the goal of identifying patterns of

repetition within viewpoints (c.f., [22]) and at the more abstract levels of detecting chorus

and verse structures.

Identifying identical structural patterns is trivial for humans and computers alike.

However, humans identify structure extremely well even when repetitions are not identical. In

music, for example, a human listener readily identifies melodic and harmonic similarity between

verses despite variation in pitch, rhythm, and lyrics. Alignment algorithms—such as the

Needleman-Wunsch (NW) [55] or Smith-Waterman (SW) [75] algorithms—have traditionally

been used to align similar non-identical sequences in bioinformatics and natural language,

although their implementation usually focuses on finding similarity between rather than within

sequences (e.g., see Figure 4.1). Furthermore, sequence alignment algorithms have typically

been used on sequences of discrete tokens belonging to finite-length alphabets, making it easy

to derive static scoring matrices (e.g., PAM [25] and BLOSUM [31]) for defining a pairwise

scoring function.

47

www.manaraa.com

Figure 4.1: Traditional Smith-Waterman Alignment Example. Shown is an example of DNA
alignment using the Smith-Waterman algorithm. The highest scoring alignment is derived starting
from the highest scoring cell in the alignment matrix and then backtracking along the path taken to
arrive at that cell until the path reaches a cell with a score of 0. The alignment suggests which
DNA bases from each DNA sequence are matching. We use an analogous method to find matching
sequence events in music. Image courtesy of Wikimedia Commons.

48

www.manaraa.com

4.2 Methods

The fundamental premise of the approach is that structure in an artefact exists by virtue of

self-similarity. In music, the verse-chorus structure is a product of similarity across viewpoints

such as melody, chords, and (for choruses) lyrics.

A primary challenge in alignment is determining alignment parameters. Sequence

alignment algorithms generally require defining a gap or insertion/deletion cost, G, as well as

a scoring function s(x1, x2) for two arbitrary sequence elements x1 and x2. These definitions

are non-trivial because they can dramatically a↵ect the resulting alignment.

In traditional alignment domains, the definition of a scoring function is relatively

straight-forward because sequence elements are easily represented using a (relatively) small

alphabet. In this case the scoring function usually consists of a simple lookup table where

values in the table represent the likelihood that one element is aligned with any other element

[31].

However, in considering the alignment of musical sequences, a sequence element

or event is significantly more complex for a few reasons. First, music—both acoustic and

symbolic—represents a continuous sequence of sound. It may be discretized at various intervals

(e.g., acoustic sampling rates, metrical beats, etc.), but how the sequence is discretized will

directly impact the ability to detect patterns across various viewpoints. Because the time

and space required per alignment increase exponentially with the sampling rate, we chose a

sampling rate of 2 events per beat.

The second complexity involved in a musical sequence element is that, even given a

particular discretization of musical events, a single event (e.g., Figure 4.2) is composed of

many di↵erent viewpoints. Even if we consider a relatively simple representation of music

such as a lyrical lead sheet, combining the number of features to consider per musical event

with their respective ranges is su�cient to define an intractable number of unique musical

events (Table 4.1).

49

www.manaraa.com

Event Feature Description Range
Feature Value
for E in Fig-
ure 4.2

is rest(E) True if E occurs during a rest [True, False] False

pitch(E) the MIDI note value being voiced at E
[0,127]
(? if is rest(E))

69

measure(E) the measure in which E occurs (0-based) Z>0 3

beat(E)
the o↵set in beats within measure
measure(E) (0-based)

R>0 0.5

duration(E)
the duration in beats of the note or rest
being voiced at E

R>0 2.5

is note onset(E)
True if the measure and beat of the onset
of the note or rest being voiced at E equals
measure(E) and beat(E)

[True, False] True

lyric(E) the lyric being sung at E
Set of all valid sylla-
bles [? “try”

is lyric onset(E)
True if the measure and beat of the on-
set of the lyric being voiced at E equals
measure(E) and beat(E)

[True, False] (? if
lyric(E) = ?)

False

harmony(E)
the harmony (represented using chord sym-
bols) being voiced at E

Set of all valid chord
symbols [? F

is harmony onset(E)
True if the measure and beat of onset
of the harmony being voiced at E equals
measure(E) and beat(E)

[True, False] (? if
harmony(E) = ?)

False

Table 4.1: Features for a music sequence event

Figure 4.2: Example of a music sequence event. Musical sequences are non-discrete and thus events
must be sampled. Table 4.1 describes the features and feature values for the event sampled at the
dotted red line.

50

www.manaraa.com

4.2.1 Multiple Smith-Waterman Self-Alignment

A traditional NW global sequence alignment is a dynamic programming algorithm [55]. For a

sequence a = (a1, · · · , an), let a0 = (a1, · · · , an�1). The optimal score S(a, b) for the alignment

of sequences a and b (with lengths |a| and |b|) is defined as a function of the optimal scores

for subalignments of a and b:

S(a, b) =

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

|a| ⇤G if |b| = 0

|b| ⇤G if |a| = 0

max(S(a0, b) +G,

S(a, b0) +G, otherwise

S(a0, b0) + s(a|a|, b|b|))

where G represents the cost of inserting a gap into the alignment and s(a|a|, b|b|) represents a

pairwise scoring function which evaluates to a score representative of the cost of aligning the

element a|a| with b|b|. Some variations (including our own) di↵erentiate between a gap open

cost, Go, and a gap extend cost, Ge, where the former is used the first time a gap is inserted

and the latter is used for subsequent, consecutive gaps. In this manner the presence and

length of a gap can be penalized independently. In practice, a NW alignment sequentially fills

in a (|a|+ 1)⇥ (|b|+ 1) matrix, M , where the value M(i, j) at the ith row and jth column

represents S((a1, · · · , ai�1), (b1, · · · , bj�1)) (where if i = 0 or j = 0 the corresponding sequence

evaluates to the empty sequence). The global alignment score is the value of M(|a|+1, |b|+1).

The alignment is produced by starting at position (|a|+ 1, |b|+ 1) and tracing back through

the matrix according to the cells which were used (in the max function) in computing the

current cell’s value: moving diagonally from (i, j) corresponds to aligning ai with bj ; moving

up aligns ai with a gap; and moving left aligns bj with a gap. Backtrack continues as long as

i > 0 and j > 0.

51

www.manaraa.com

The SW local alignment algorithm alters aspects of the NW global alignment algorithm

to find the highest scoring subsequence alignment between two sequences [75]. Modifications

are primarily three-fold. First, S(a, b) is additionally constrained to be non-negative, essen-

tially allowing the algorithm to discover the beginning of the optimal alignment anywhere in

the alignment matrix M . Second, the local alignment score (for the optimal local alignment)

is the maximum value in M . The row i and column j where this value appears mark the

termination of the local alignment. Backtracking proceeds as in the NW algorithm as long as

M(i, j) > 0.

We are interested in locally aligning musical phrases. We, however, are interested

in more than simply the optimal local alignment; we would like to find all significant local

alignments. We thus further adapt the SW algorithm to achieve what we call a multiple

Smith-Waterman (MSW) self -alignment. In this variation, we find multiple backtrack points

in M . To do this we define a local maximum threshold, ⌧ , and a minimum event match

distance, ✏, such that M(i, j) is a local maximum i↵ M(i, j) � ⌧ and M(i, j) � M(k, l) for

8k = i± ✏ and 8l = j ± ✏. Backtracking then proceeds as in the SW algorithm. Because we

are doing self-alignment, we need only compute the upper diagonal of M (i.e., j � i). We

are also not interested in alignments that are close to the diagonal (i.e., that represent the

alignment of an event with itself or close neighbors). We therefore only compute M where

j � i+ ✏ (see Figure 4.3). For our implementation, ✏ = 4.

4.2.2 Genetic Algorithm Parameters

Given this general approach, the challenge becomes properly defining the pairwise scoring

function s(ai, bj) and the general alignment parameters Go, Ge, and ⌧ . We describe sev-

eral viewpoint-specific definitions for s(ai, bj) below, each of which defines several scoring

function parameters. These viewpoint-specific parameters, along with the general alignment

parameters, are learned via GA (see Figure 4.4).

52

www.manaraa.com

Figure 4.3: Finding pitch structure via sequence alignment. Representing the song Twinkle, Twinkle,
Little Star as a sequence of discrete events, we align the song against itself using a multiple
Smith-Waterman alignment and a pitch-specific pairwise scoring function. The longer red diagonal
represents the repetition of pitch between the two choruses in the song whereas the smaller diagonal
represents repetition of pitch within the bridge section. Weights for the pairwise scoring function
are learned via genetic algorithm (see Figure 4.4). In this example, 27 generations were required to
find weights which maximize the fitness function (F-score).

Generation 1 Generation 2 Generation 9 Generation 15 Generation 23 Generation 27
F1 = 0.34 F1 = 0.65 F1 = 0.80 F1 = 0.80 F1 = 0.80 F1 = 1.0

Figure 4.4: Learning weights for the pitch scoring function. As scoring function weights are adjusted
via the GA, di↵erent alignments result. We use a multiple Smith-Waterman alignment approach to
find all local alignments that result in a score above a threshold ⌧ (also determined by the GA). As
weightings are found that more accurately align (labeled) pitch repetitions, the F-score increases.
Shown is the alignment of the song Twinkle, Twinkle, Little Star.

53

www.manaraa.com

Initially we generate a population of 20 unique parameterizations where each parameter

is randomly initialized in the range [-3,3] (⌧ is randomly initialized in the range [0,20)). For

each of 5000 generations of the GA, we generate 10 new parameterizations via 1) crossover

of two parameterizations randomly selected from the population and then 2) mutation where

each parameter has a 0.2 probability of adding a random number in the range [-10,10] to its

value (with 0.2 probability ⌧ is multiplied by a factor in the range [0,2)).

Alignment Fitness Function

We manually labeled a small subset of the Wikifonia leadsheet dataset with structural

repetitions across viewpoints. These labels essentially represent which events we expect to be

aligned via our MSW alignment. An event can be aligned with 0, 1, or many other events.

We can evaluate a parameterization � according to the number of event pair alignments that

are true positive (TP), false positive (FP), and true negative (TN) when � is used in our

scoring function:

F1(�) =
(1 + �2) ⇤ TP + 1

(1 + �2) ⇤ TP + �2 ⇤ FN + FP + 1

with � = 1.0 to equally weight recall and precision. We add 1 to the numerator and the

denominator to ensure that F1 is defined when no TP are possible (e.g., Twinkle, Twinkle,

Little Star has no verse). Averaged over all songs in the training data, the F-score represents

the fitness of an individual parameterization in our GA. Using this fitness function, we find

the optimal parameterization �⇤
v
for each viewpoint v via its respective alignment scoring

function as described below.

Here, F-score should be viewed as a relative rather than absolute measure of perfor-

mance for several reasons. First, structure is inherently an abstract concept. This means

that what should be labeled in our training data as structure is sometimes ambiguous and

can be represented along a spectrum of granularity (e.g., hierarchical rhythmic structure).

Second, the scoring functions described below are meant primarily to be illustrative. We

found that structure learning is sensitive to which features are included and how they are

54

www.manaraa.com

combined. Third, GAs are stochastic by nature, and the (e�ciency of) structure learning is

sensitive to this stochasticity. Fourth, we intentionally chose songs with non-trivial structure

to see how well this approach would generalize. Thus, even suboptimal F-scores are in many

cases reflective of alignments that yield significant structural representation.

Alignment Scoring Functions

We define six di↵erent scoring functions: one scoring function for each of the primitive

viewpoints of harmony, pitch, rhythm, and lyrics, and one scoring function for each of the

derived viewpoints representing chorus and verse structures. Each scoring function scores the

similarity of two musical events using a unique subset of event features that are indicative of

self-similarity in that viewpoint.

Since structural repetitions in music tend to preserve meter, all viewpoint alignment

functions are designed to consider the o↵set within the measure of the two events being

aligned. For events e1 an e2 we define a beat matching subfunction MB(e1, e2) for this o↵set

alignment as

MB(e1, e2) =

8
>><

>>:

◆B if b1 = b2

�B + �B ⇤ |b1 � b2| if b1 6= b2

where bi = beat(ei) and ◆B, �B, and �B are weights determined for each viewpoint by the

GA.

Harmony

A harmony harmony(ei) represents a set of pitches which we denote notes(harmony(ei)) =

{p1, · · · , pn} where each pitch pi is a MIDI note value modulo 12 to normalize values to a

common octave. Using the shorthand Ni = notes(harmony(ei)) we define a harmonic scoring

function SH(e1, e2) as follows:

SH(e1, e2) = IH(e1, e2) +OH(e1, e2) +MB(e1, e2)

55

www.manaraa.com

with the identity subfunction IH(e1, e2) computed as

IH(e1, e2) =

8
>><

>>:

◆H if N1 = N2

�H + �H/Z(N1, N2) if N1 6= N2

where the set similarity function Z(N1, N2) is defined as

Z(N1, N2) = (2 ⇤ |N1 \N2|/(|N1|+ |N2|))

Letting oi = is harmony onset(ei),

OH(e1, e2) =

8
>>>>>><

>>>>>>:

⌦H if o1 ^ o2

!H if o1 _ o2

�H otherwise

In this manner, ◆H , �H , �H , ⌦H , !H , and �H represent weights to be learned by the GA.

Pitch

Letting ri = is rest(ei) and pi = pitch(ei), we compute the pitch score SP (e1, e2) of events e1

and e2 as

SP (e1, e2) =

8
>>>>>><

>>>>>>:

R if r1 ^ r2

⇢ if r1 _ r2

�R +MP (e1, e2) otherwise

with MP (e1, e2) representing the pitch matching subfunction for scoring two events:

MP (e1, e2) = IP (e1, e2) +OP (e1, e2) +MB(e1, e2)

56

www.manaraa.com

with

IP (e1, e2) =

8
>><

>>:

◆P if p1 = p2

�P + �P ⇤ |p1 � p2| if p1 6= p2

letting oi = is pitch onset(ei),

OP (e1, e2) =

8
>>>>>><

>>>>>>:

⌦P if o1 ^ o2

!P if o1 _ o2

�P otherwise

Again R, ⇢, �R, ◆P , �P , �P , ⌦P , !P , and �P represent weights to be learned by the GA.

Rhythm

Letting ri = is rest(ei) and di = duration(ei), we compute the melodic rhythm score

SR(e1, e2) as

SR(e1, e2) = MR(e1, e2) ⇤ (ID(e1, e2) +OP (e1, e2) +MB(e1, e2))

with MR(e1, e2) representing the rest matching subfunction for scoring two events:

MR(e1, e2) =

8
>>>>>><

>>>>>>:

R if r1 ^ r2

⇢ if r1 _ r2

�R otherwise

with

ID(e1, e2) =

8
>><

>>:

◆D if d1 = d2

�D + �D ⇤ |d1 � d2| if d1 6= d2

R, ⇢, �R, ◆D, �D, and �D are weights learned by the GA.

57

www.manaraa.com

Lyrics

Intuitively structural patterns in lyrics are a product of word sequences that repeat. This

happens, for example, in choruses or taglines. It does happen on occasion that di↵erent

iterations of the chorus contain added words or phrases for which some flexibility is needed.

Thus we design the lyric scoring function in order to allow the GA to learn appropriate

weights for pairs of notes in which one or both notes are either rests or non-lyrical. We also

design the lyric scoring function to learn weights that favor the alignment of lyric onsets.

For two events e1 and e2, we compute the lyric score SL(e1, e2). Letting ri = is rest(ei)

and li = lyric(ei),

SL(e1, e2) =

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

R if r1 ^ r2

⇢ if r1 _ r2

N if l1 = ? ^ l2 = ?

⌫ if l1 = ? _ l2 = ?

ML(e1, e2) otherwise

with ML(e1, e2) representing the lyric matching subfunction for scoring two events with

non-empty lyrics:

ML(e1, e2) = IL(e1, e2) +OL(e1, e2) +MB(e1, e2)

with

IL(e1, e2) =

8
>><

>>:

◆L if l1 = l2

�L if l1 6= l2

58

www.manaraa.com

Letting oi = is lyric onset(Ei),

OL(e1, e2) =

8
>>>>>><

>>>>>>:

⌦L if o1 ^ o2

!L if o1 _ o2

�L otherwise

R, ⇢, N , ⌫, ◆L, �L, ⌦L, !L and �L are learned by the GA.

Chorus and Verse

Having defined scoring functions for primitive viewpoint alignments, we can now define

compound scoring functions for more abstract feature alignment. Consider, for example, that

a chorus is generally defined as a musical subsequence in which harmony, pitch, rhythm, and

lyrics repeat. A verse is generally defined as a musical subsequence in which harmony, pitch,

and rhythm repeat, and lyrics do not repeat. Given that both of these abstract features

consider the same set of primitive features, we define a single compound scoring function

that can be used (with di↵erent parameterizations) to learn structure for both.

For two events e1 and e2, we compute a compound alignment score SC(e1, e2) as

SC(e1, e2) = wH ⇤ SH(e1, e2) + wP ⇤ SP (e1, e2) + wR ⇤ SR(e1, e2) + wL ⇤ SL(e1, e2)

with wH , wP , wR, and wL representing the weights (to be determined by the GA) of

the viewpoints harmony, pitch, rhythm, and lyric respectively, and each of the viewpoint-

specific scoring functions as defined above. In learning these abstract features we use optimal

parameterizations �⇤
H
, �⇤

P
, �⇤

R
, and �⇤

L
for the subscoring functions as learned on the respective

viewpoint-specific alignment tasks. For learning verse structure, the values of ◆L and �L in

�⇤
L
are swapped because �⇤

L
is trained to find where lyrics are similar and verses require lyrics

which are di↵erent (in similar positions). General alignment parameters Go, Ge, and ⌧ for

subscoring functions are ignored.

59

www.manaraa.com

Harmony Pitch Rhythm Lyric Chorus Verse
F1 = 0.90 F1 = 0.95 F1 = 0.78 F1 = 0.94 F1 = 0.78 F1 = 0.80

Twinkle,
Twinkle
Little
Star

F1 = 0.99

Over the
Rainbow
F1 = 0.97

Hey Jude
F1 = 0.66

Take Me
Home,

Country
Roads

F1 = 0.87

Imagine
F1 = 0.81

Figure 4.5: Structure Detection. For each viewpoint (i.e., column), the same scoring function weights
were used. This suggests a common scoring function can be used to find viewpoint-specific structure
across di↵erent songs. The Chorus and Verse columns use scoring functions that are a composite
of the four primitive viewpoint scoring functions. Using the GA approach for finding alignment
weights for each viewpoint, we can extract the structure for each viewpoint for a given song. These
structural representations can then be used for subsequent analyses including classification and
generation. For each viewpoint, v, F1 is F1(�⇤

v). For each song, F1 is the average F1(�⇤
v) across

alignments for all viewpoints v for that song only.

4.3 Results and Discussion

For each primitive viewpoint v we trained for 5000 generations to find the parameterization

�⇤
v
which maximized F1(�v) on the training data. These parameterizations then are used

to identify structure in several songs (see Figure 4.5). We also tested for how well results

generalize to an independent dataset (Table 4.2).

60

www.manaraa.com

H P R L C V

Train 0.90 0.95 0.73 0.82 .79 .75
Test 0.83 0.88 0.66 0.75 .52 .50

Train (hard) 0.90 0.94 0.69 0.89 0.74 .67
Test (easy) 0.84 0.99 0.91 1.00 0.75 1.00

Table 4.2: Generalizability. (Top) Shown are average F-scores for training and test sets resulting
from a 5-fold cross-validation on a 5-song dataset (1000 generations). (Bottom) Results aggregated
from 2 of the 5 cross-folds in which the holdout song is of simpler composition (Twinkle, Twinkle
and Over the Rainbow). Results suggest that even with limited training, generalization is possible,
particularly when generalizing to compositions with complexity less than or equal to that represented
in the training set.

Each row in Figure 4.5 e↵ectively represents a 6-faceted structure of a song. Note that

within each column, patterns across primitive viewpoints emerge, ultimately combining to

yield structural information about abstract features. Notice, for example, how the overlapping

across the first 4 columns e↵ectively identifies the choruses of a song whereas overlapping

the first 3 and subtracting the 4th e↵ectively identifies the verses. These patterns reinforce

the notion that each song has a characteristic abstract structure that is learnable via MSW

self-alignment.

Significant patterns also emerge within columns. Harmonic and pitch structure, for

example, tend to show up in longer isolated bands with limited horizontal (or vertical)

overlap. Rhythmic structure often shows up as “pyramids” of lines with significant horizontal

overlap. These patterns point to the fact that rhythmic structure is far more frequent and

even hierarchical as compared to structure in other viewpoints. Lyric structure is similar to

harmony and pitch structure, but with fewer, sometimes shorter bands. This points to the

fact that patterns in harmony and pitch usually span longer ranges within a song whereas

lyric patterns are made up of short, dispersed repetitions.

Song-specific and viewpoint-specific structural trends are significant for di↵erent

reasons. Song-specific trends make it possible to e↵ectively compare the similarity of two

songs at an abstract, musical level. This has implications for being able to classify music,

recognize di↵erent arrangements of the same song, and recommend music with similar

61

www.manaraa.com

structural elements. Viewpoint-specific trends are significant in being able to generate novel

structures for novel music, aiding song-writers and musical metacreationists to discover novel,

meaningful structures. These trends have implications for probabilistic parsing, referring to

the ability to compute a probability representing how well a musical sequence fits within a

particular genre or appeals to a particular audience.

The approach, results, and implications we have demonstrated are not constrained to

the symbolic music domain—similar functions, alignments, and patterns can be derived in

other domains. For example, MSW self-alignment applied to musical audio signals can be

used for chorus-detection, an area that has garnered significant interest (e.g., [29]). MSW

self-alignment applied to linguistic features of poetry or lyrics can be used for rhyme scheme

detection.

The ability to infer abstract structural features demonstrated here imbues computa-

tional systems with the ability to analyze artefacts in a way that more closely approaches

their underlying meanings and intentions.

62

www.manaraa.com

Chapter 5

Binary Relational Constraints in Non-Homogeneous Markov Models

5.1 Introduction

Structure is often observed or created in sequential data as a result of relationships between

elements at potentially distant positions. Protein and RNA folding depend on bonds formed

by the pairing of amino acids and ribonucleotide bases respectively at various intervals. In

natural language subject-verb and pronoun-antecedent agreements depend on the correct

pairing of potentially distant words. Other examples of sequencing problems with relational

structures might include the rostering and car sequencing problems.

In this paper we are interested in the problem of probabilistically modeling sequences

under relational constraints, that is sequences in which values at distant positions within

the sequence are constrained to relate according to an arbitrary predefined relation (e.g.,

matching, bonding, agreement, etc.). Owing to their stochasticity, Markovian sequential

data models struggle to account for structure beyond the Markov window which results in a

limited ability to generate or classify sequences in problem domains characterized by such

structures.

Much work has been done to impose structure in Markov processes by combining

such processes with constraint programming (CP) and constrained probabilistic modeling

techniques. Non-homogeneous Markov models (NHMMs) [59] generate finite-length sequences

which adhere to a set of unary constraints with probabilities determined from a Markov

process.

63

www.manaraa.com

Recent work has focused on statistical models which obey regular constraints. A regular

constraint on a sequence of finite-domain variables is a constraint that requires that the

corresponding sequence of values taken by these variables belongs to a given regular language

[68]. These models are convenient because they can e↵ect structure without imposing unary

constraints at fixed positions. Papadopoulos et al. [61] demonstrate how a regular constraint

in the form of a deterministic finite automaton (DFA) can be combined with a probabilistic

Markov model to create a model that generates sequences belonging to the language of the

automaton with probability approximately equal to the Markov probability distribution.

Their follow-up work devises a belief propagation model in the form of a factor graph capable

of exact sampling of sequences under arbitrary regular and Markov constraints [62].

Relational constraints can often not be characterized using regular languages (e.g.,

A = {ww | w 2 a, b⇤} or A = {ww | w 2 ⌃} where ⌃ is an infinite domain). However, under

the assumptions of finite-domain variables and finite-length sequences, relational constraints

can be modeled using regular constraints. This suggests that an approach similar to that of

Papadopoulos et al. [62] may be suitable for imposing relational constraints given a method

for proper DFA construction.

In what follows we detail the formulation of a regular constraint (in the form of a

DFA) from an arbitrary set of relational constraints. We also detail a method for exact

probabilistic sampling of sequences from the language an arbitrary DFA which uses NHMMs

and demonstrate its improved e�ciency over factor graphs for sampling large batches of

constrained sequences.

5.2 Related Work

Several works have been presented which address the problem of imposing relational con-

straints. Barbieri et al. [2] demonstrate examples of how unary constraints can be used to

imitate relational rhyming constraints. This approach is not suitable for most relational

64

www.manaraa.com

constraint applications as it relies on separately constraining values at independent positions

rather than constraining based on the comparison of values.

Bodily and Ventura [12] demonstrate that arbitrary relational constraints can be

e↵ected in d-order NHMMs but only when matching positions are within the Markov window

(i.e., at most d sequence positions apart). The method we present has no limitation on the

distance between relationally constrained positions.

Roy et al. [72] define an Allen constraint as a global constraint relating indices with

temporal positions. This work is designed to primarily address contiguous temporal sequences

in which temporal positions and sequence indices are not directly related. Their interest is

primarily in sub-sequence equality constraints. The algorithm for how these constraints are

e↵ectuated is not presented.

Collins and Laney [15] create long-term repetitive and phrasal structure in music

using a “copy-paste” approach to enforce binary matching of full sequences at intervals. This

approach is fundamentally non-Markovian at splice sites causing unnatural transitions at splice

sites. Pachet et al. [60] present a similar “copy-paste” method for creating structured music

lead sheets, but use a controlled variation mechanism to ensure that copies are contextually

situated to satisfy Markovian properties.

To our knowledge, the method described below is novel in its strict use of Markovian

processes (of arbitrary order) for generation while simultaneously enforcing arbitrary relational

constraints at arbitrary distances.

5.3 A DFA for Relational Constraints

A binary relation ⇢ on a set ⌃ is defined as a set of ordered pairs of elements of ⌃. Examples

include the set of pairs of amino acids (x, y) such that x forms a bond with y; or the set of

ordered pairs of words (x, y) such that x is an antecedent and y is a pronoun that agrees

with x.

65

www.manaraa.com

In generating a sequence of random variables X = (X1, ..., Xn) we define a relational

constraint (Xi, Xj, ⇢) for an arbitrary binary relation ⇢ to mean that the values xi and xj

assigned to the variables Xi and Xj are constrained so as to ensure that (xi, xj) 2 ⇢. A

partially instantiated relational constraint of the form (xi, Xj, ⇢) or (Xi, xj, ⇢) represents

a unary constraint in which Xi or Xj has been further constrained to the values xi or xj

respectively.

A DFA, or simply an automaton, is defined as a quintuple A = hQ,⌃, �, q0, F i in

which:

• Q is a finite set of states;

• ⌃ is a finite set of symbols termed the alphabet;

• q0 2 Q is the initial or start state of the automaton;

• � is the transition function Q⇥⌃! Q, mapping a state to a successor state for a given

symbol;

• F ✓ Q is the set of final or accept states.

A sequence s = {s1, ..., sn} is accepted by A i↵ there exists a sequence q0, ..., qn of

states such that 8i, 1  i  n, �(qi�1, si) = qi and qn 2 F . The language L(A) is the set of

all sequences which A accepts.

A Markov model is a stochastic process where the probability of a sequence of random

variables X = (X1, ..., Xn) is computed as P (X) = P (X1) · P (X2 | X1) · · ·P (Xn | Xn�1). As

such a Markov model consists of a set of initial probabilities I for each state and a set of

transition probabilities T between states. Note that when combining a DFA and Markov

model, the domain ⌃ for variables X1, ..., Xn is the same as the alphabet ⌃ for the DFA.

Given a set of binary relational constraints M = {(Xi, Xj, ⇢)}, a set of valid start

symbols I ⇢ ⌃, a set of valid transitions T = {sisj | si 2 ⌃ and sj 2 ⌃}, and a length n,

Algorithm 1 creates a DFA A such that L(A) is the set of all sequences s 2 ⌃n such that

s1 2 I; si�1si 2 T for all i, 1 < i  n; and (sj, sk) 2 ⇢ for all relational constraints (Xj, Xk, ⇢)

66

www.manaraa.com

in M. Where I and T are derived from the sets I and T of a Markov model M , this means

pM(s) > 0.

Algorithm 1 Relational Automaton

Data: n a sequence length
M a set of binary relational constraints
I a set of valid initial states
T a set of valid transitions

Result: A a DFA for M
A hQ,⌃, �, q0, F i
S {h;, I, q0i}
for i 1 to n� 1 do

S 0 {}
for hC, V, qi 2 S do

for v 2 V do
C 0 {(A,B, ⇢) 2 C | A 6= Xi ^B 6= Xi}
for (Xj, Xk, ⇢) 2M do

if i = j and j < k then
C 0 C 0 [(v,Xk, ⇢)

if i = k and k < j then
C 0 C 0 [(Xj, v, ⇢)

V 0 ; . initialize possible next states
for vv2 2 T do . filter by C 0

if 8(v0, Xi+1, ⇢)2C 0, (v0, v2) 2 ⇢ then
if 8(Xi+1, v0, ⇢)2C 0, (v2, v0) 2 ⇢ then

V 0 V 0 [v2
if V 0 6= ; then . if not a dead state

if 9qi s.t. hC 0, V 0, qii 2 S 0 then
q0 qi

else
q0 NewState(Q)
S 0 S 0 [hC 0, V 0, q0i

�(q, v) q0 . extend path

if S 0 = ; then
return null . unsatisfiable

S S 0

qacc NewState(Q) . define accepting state
F F [qacc
for hC, V, qi 2 S do

for v 2 V do
�(q, v) qacc

return A

67

www.manaraa.com

Figure 5.1: A Relational automaton. The result of Algorithm 1 on inputs n = 4; M = {(X1, X4, ⇢}
(where ⇢ represents the set of rhyming word pairs); I = {Mary, Clay}; and T derived from the
non-zero transitions represented in the Markov model shown in Figure 5.2.

The algorithm takes the general approach of building breadthwise a tree-like DFA

where each layer (of edges) in the tree represents a position in the sequence to be generated.

Each state qi is defined by a triple < C, V, qi > where C = {(Xi, Xj, ⇢)} is the set of relational

constraints that are guaranteed from the state; V = {x | x 2 ⌃} is the set of valid labels

allowed by T for edges originating from the state (in practice dead states and paths may be

pruned); and qi is a reference to the state itself.

When expanding the path via a state qi associated with sequence position i and

triple < C, V, qi >, a new path is considered for every label v 2 V . In order to build the

path, the algorithm first computes what would be the new triple < C 0, V 0, q0 > for the new

state reached via v in order to check if such a state already exists. The new set C 0 inherits

all constraints from C except those already satisfied at sequence position i and adds new

constraints applying to position i in their partially instantiated form using v. The new set V 0

is populated with the set of all labels v2 that are 1) valid transitions from v according to T

and 2) satisfying values for any constraints in C 0 which apply to sequence position i+ 1. In

practice, V 0 can be further constrained by unary constraints or negated relational constraints

(i.e., constraining to ensure (xi, xj) 62 ⇢) to further prune undesirable sequences. Assuming V 0

is not empty (a sign of a dead state), we check for an existing state associated with sequence

68

www.manaraa.com

Figure 5.2: A Markov model.

position i + 1 and triple < C 0, V 0, q0 > or create a new one which is then used to extend

the path. In the last state layer there is a single accepting state to which all states in the

previous state layer connect via all valid labels in their respective V sets.

Figure 5.1 shows the DFA built using Algorithm 1 with n = 4; M = {(X1, X4, ⇢rhyme}

(where ⇢rhyme represents the set of rhyming word pairs); I = {Mary, Clay}; and T derived

from the non-zero transitions represented in the Markov model shown in Figure 5.2.

The time and space requirements for the algorithm vary significantly depending on

the inputs. Each constraint in M at a new position splits the path into a number of paths

dependent on the number and distribution of transitions in T and the restrictiveness of the

constraint’s relation ⇢. Divergent paths will reconverge once all overlapping constraints have

been resolved. The number of paths and states can also be reduced by the addition of unary

constraints, negated relational constraints, increasing the number of symbols per label (i.e.,

increase the Markov order), and reducing the size of the transition set T .

One way to optimize the construction of a Relational automaton is to take advantage

of binary relational constraints for which ⇢ is an equivalence relation (i.e., reflexive, symmetric,

and transitive). In such cases many partially instantiated constraints become equivalent.

For example, under the equivalence relation of rhyming (allowing for a word to rhyme

with itself), the following partially instantiated binary relational constraints are equivalent:

(Mary,X4, ⇢), (Fairy,X4, ⇢), (Carry,X4, ⇢). These constraints can all be represented using

69

www.manaraa.com

a generalized constraint that uses the equivalence class EMary representing the set of all

rhyming word pairs that rhyme with “Mary”: (EMary, X4, ⇢). This facilitates the combining

of states in the DFA.

5.4 Exact Sampling of Constrained Sequences

Given a Relational automaton A, a Markov model M , a set of unary constraints C, and a

length n we now turn attention to sampling sequences from the target distribution p⇤ defined

as:

p⇤(X1, ..., Xn) /

8
>>>>>><

>>>>>>:

pM(X1, ..., Xn)· if X1, ..., Xn 2 L(A)

Q
n

i=1 pC(Xi)

0 otherwise

where pM is the probability of the sequence X1, ..., Xn according to M and pC represents the

probability distribution imposed by the constraints C.

Papadopoulos et al. [62] demonstrate one mechanism for computing p⇤ that uses factor

graphs with belief propagation for sampling sequences with exact probabilities according to

the original distribution. In this latter solution a backward phase computes the impact on

each sequential position i in the factor graph of the sub-factor graph representing all positions

“to the right” of i. A forward phase computes the marginal distribution over values for each

sequence position i given the partial instantiation for variables representing positions “to the

left” of i and simultaneously samples a sequence. A potential drawback to this solution is

that though the backward phase is completed once, the forward phase is repeated each time

a sequence is sampled.

We present a novel algorithm (Algorithm 2) for sampling sequences under regular

and Markov constraints with exact probability that uses a NHMM [59]. A NHMM N is

a constrained probabilistic model constructed from a Markov model M , a set of unary

70

www.manaraa.com

constraints C, and a length n such that

pN (X1, ..., Xn) / pM(X1, ..., Xn) ·
nY

i=1

pC(Xi)

Constructing a NHMM computes all marginal distributions ahead of time. This speeds up

sampling time at the cost of an increased build time, making it a better choice for sampling

large sets of sequences or online applications (see Figures 5.4 and 5.5). A detailed explanation

of NHMMs and the method of their construction (referenced as “constructNHMM()” in

Algorithm 2) is available from Pachet et al. [59].

Given an automaton A = hQ,⌃, �, q0, F i, a Markov model M = {I, T }, a set of unary

constraints C = {cXi} (where cXi represents a unary constraint c applied to the random

sequence variable Xi), and a length n, Algorithm 2 builds a new “state-sensitive” Markov

model M 0 which incorporates the regular constraint represented by A. Each Markov label in

M 0 represents a label-state pair < x, q > where x 2 ⌃ is a label of the original Markov model

M and q 2 Q is a state of the automaton A. Whereas with M we can directly sample values

x1, ..., xn for a sequence of random variables X = X1, ..., Xn, in the “state-sensitive” model M 0

we first sample values x0
1, ..., x

0
n
for a sequence of random label-state variables X 0 = X 0

1, ..., X
0
n
.

We obtain X through the assignment X = x0
1.label, ..., x

0
n
.label where x0

i
.label is the value of

the label in the label-state pair x0
i
.

The set of initial probabilities I 0 of M 0 is defined as

I 0(< x, q >) /

8
>><

>>:

I(x) if q = �(q0, x)

0 otherwise

and the transition probability function T 0 of M 0 is defined as

T 0(< x0, q0 >|< x, q >) /

8
>><

>>:

T (x0 | x) if q0 = �(q, x0)

0 otherwise

71

www.manaraa.com

A new set of unary “state-sensitive” constraints C 0 is also created such that for each unary

constraint cXi 2 C, an equivalent constraint cX0
i.label

(meaning the same general constraint c

applied to the label attribute of the random label-state variable X 0
i
) is added to C 0 which

applies only to the label x in the new label-state pair x0 = (x, q). An accepting constraint

cX0
n.state2F applying to X 0

n
is also added to C 0 to ensure that all valid Markov sequences from

M 0 end with a label-state pair x0 = (x, q) where q 2 F .

The final step of Algorithm 2 constructs a NHMM from the unnormalized M 0, C 0,

and n using the construction set forth by Pachet et al. [59] which normalizes probabilities to

create the target distribution p⇤.

Algorithm 2 Regular NHMM

Data: A hQ,⌃, �, q0, F i an automaton
M {I, T } a Markov model
C {cXi} a set of unary constraints
n the finite length of the resulting model

Result: N a NHMM which samples sequences from L(A) with exact probability according
to M

M 0 {I 0, T 0} . Create new Markov model
for (q, a) 2 � s.t. q = q0 do

I 0(< a, �((q, a)) >) I(a) . Add initial states

for (q, a) 2 � do
for a2 2 ⌃ do . Add transition probabilities

T 0(< a, q >,< a0, �((q, a)) >) T (a1, a2)

C 0 {} . Create new set of control constraints
for cXi 2 C do

C 0 C 0 [cX0
i.label

C 0 C 0 [cX0
n.state2F

return constructNHMM(M 0, C 0, n)

5.5 Structured Parallel Sequence Generation

Relational automata are e↵ective tools for being able to impose both Markovian transitional

constraints (horizontal structure) and relational constraints (vertical structure). This is

well-demonstrated in using binary relational constraints to constrain parallel interrelated

72

www.manaraa.com

Figure 5.3: A “state-sensitive” pseudo-Markov model. This is the model M 0 built in Algorithm 2
given as inputs the automaton in Figure 5.1, the Markov model in Figure 5.2, an empty unary
constraint set, and a length n = 4. This is a “pseudo”-Markov model because, given this approach,
probabilities must remain unnormalized for proper construction of the NHMM.

Figure 5.4: Amortized Sample Time By Sequences Generated. Shown are average amortized sample
times per sequence (belonging to the set {aa + b+} of fixed length 100) when sampling using a
NHMM (blue) and factor graph (orange). The NHMM has a longer build time but shorter sample
time per sequence meaning that as the number of sequences increases, the NHMM has a lower
amortized sample time than the factor graph.

73

www.manaraa.com

Figure 5.5: Sample Time By Length. Shown are average sample times for the NHMM (blue) and
factor graph (orange) from sampling 100,000 sequences belonging to the set {aa+ b+}. Both sample
times increase linearly with the sequence length. Though the sample time per sequence is always
lower for the NHMM, the NHMM build time also increases with sequence length resulting in a lower
amortized sample time (dotted lines) for factor graphs as the sequence length increases.

sequences, as we show in the following example of generating a musical sequence with global

verse-chorus structure across multiple viewpoints.

Verse-chorus structure is e↵ected in lyrical sectional-form music when subsequences

of di↵erent types or viewpoints (e.g., chords, pitches, rhythms, and lyrics) are repeated at

intervals throughout the musical sequence. For example, a verse is generally regarded as a

segment where the chords, pitches, and rhythms are repeated, but the lyrics are di↵erent and

a chorus is generally regarded as a segment where all viewpoints are repeated.

Repetition of subsequences requires the use of a series of binary relational constraints

using the equality binary relation. Rather than hand-craft a set of relational constraints Mv

for each viewpoint v, we learn existing patterns of repetition from normalized data and then

translate these patterns into sets of binary relational constraints. For each of four viewpoints

(chords (H), rhythm (R), lyrics (L), and pitch (P)) we perform multi-Smith-Waterman (mSW)

alignment on the discretized musical sequence using parameterizations as found by Bodily

and Ventura [11] on the song Twinkle, Twinkle, Little Star. This song is characterized by a

74

www.manaraa.com

Chord Pitch Rhythm Lyric

Figure 5.6: Inferring Relational Constraints. Relational constraint sets are inferred from real data
using multiple-Smith-Waterman sequence alignment. Shown are the structural patterns inferred for
the chord, pitch, rhythm, and lyric sequences in Twinkle, Twinkle, Little Star. Because the song is
aligned against itself, each axis represents the song sequence (top to bottom, left to right).

Figure 5.7: Horizontal and Vertical Structure. Shown are four parallel sequences (chords,
pitches, rhythms, and lyrics) that exhibit both horizontal structure—each fully satisfies Markovian
constraints—and vertical structure—each fully satisfies binary relational constraints, frequently
in the same sequence positions as with relational constraints in other sequences. Boxes of the
same color are used to illustrate subsequences which position-by-position are constrained via binary
relational constraints to be equivalent. Dark red boxes reflect binary relational rhyming constraints.
Not labeled is the pattern of rhythmic repetition every 2 measures.

75

www.manaraa.com

chorus-verse-chorus structure with each segment lasting 4 measures. Graphic representations

of the structural patterns learned from this song are shown in Figure 5.6. For each viewpoint

v 2 {H,R,L, P} the alignment identifies matching regions (signified by dark red diagonals)

of the training song according to v. Each alignment essentially defines for each position i

a set of matching positions Si = {j | j > i} such that Mv = {< i, j, ⇢ >| 8i, j such that

j 2 Si} where ⇢ is the equality relation.

In addition to the vertical structure imposed by these binary relational constraints,

we added the following constraints:

Chord. Because binary relational constraints are designed to enforce structural

repetition, it is not uncommon for generated sequences (particularly those from models

trained on small data sets) to become overly repetitive, repeating structure even when it

is not enforced. To counteract this e↵ect in the chord sequence, we added a second set

of binary relational constraints which constrained a subset of positions within regions not

aligned via the mSW alignment to not match according to the equality relation. The model

is constrained to generate sequences starting and ending with a C major chord.

Rhythm. We add unary constraints to make the generated rhythmic sequence end

with a half-note rhythm to evoke a sense of finality.

Lyric. The length (in syllables) of the lyric sequence nL is derived from the number

of sampled rhythm tokens representing non-rest rhythmic onsets. Prosody (i.e., aligning

stressed syllables with stressed beats) is achieved by constraining syllables for o↵beat rhythms

to be unstressed. Rhyming is e↵ectuated using a second binary relational constraint set

M0
L
= {(Xi, Xj, ⇢)} with ⇢ representing the binary relation for which a pair of syllables

(xi, xj) 2 ⇢ i↵ xi and xj have identical phonemic nuclei and codas. M0
L
is constructed such

that the last syllables in measures 2 and 4 rhyme and the last syllables in measures 6 and 8

rhyme.

Pitch. We constrain the last pitch in the sequence to be the root of the final chord.

For all positions i we constrain the pitch at i to equal one of the pitches defining the chord

76

www.manaraa.com

at position i. We constrain the last pitch in the sequence to be the root of the final chord.

For all positions i we constrain the pitch at i to equal one of the pitches defining the chord

at position i as per the previously sampled harmonic sequence.

The Markov models MH and MP for the chord and pitch sequences were trained on

the chord and pitch sequence data in Somewhere Over the Rainbow. The rhythmic Markov

model MR was trained on rhythms from 5 di↵erent songs to give the model a rich choice of

rhythmic variation. The lyric Markov model ML was trained on the lyrics from the Beatle’s

Hey Jude and John Lennon’s Imagine parsed using word pronunciations from the CMU

dictionary1 and the CMUSphinx grapheme-to-phoneme converter [81].

Given the relational constraints Mv, the Markov model Mv, and these additional

binary and unary constraints, we generate a Relational automaton Av and a Regular

NHMM Nv for each viewpoint v 2 {H,R,L, P}. The chord, rhythm, lyrics, and pitch

sequences shown in Figure 5.7 were sampled from their respective NHMMs with probabilities

4.9e-5, 7.7e-6, 0.032, and 2.0e-3 respectively.

5.6 Discussion and Conclusion

Whereas arbitrary relational structure is possible using the approach taken by Bodily and

Ventura [12], the approach we have presented is not restricted to using higher-order Markov

transitions. This enables a very expressive model, even when trained on very small datasets.

Although for simplification we have focused exclusively on binary relations, the

algorithms and logic in this approach could be adapted to allow for n-ary relations ⇢ and

relational constraints (Xi1 , ..., Xin , ⇢). Such adaptations are unlikely to a↵ect runtime or space

(except to the extent that they span longer distances) because they potentially constrain the

model more heavily, thus reducing the search space more significantly. These impacts and

possible applications of n-ary relational constraints in Markov processes are a possible target

of future research.
1http://www.speech.cs.cmu.edu/cgi-bin/cmudict

77

http://www.speech.cs.cmu.edu/cgi-bin/cmudict

www.manaraa.com

We have demonstrated the modeling of relational constraints in Markov processes using

a Relational automaton. We have also provided a method for exact sampling of sequences

from an arbitrary automaton according to Markovian probabilities using a Regular NHMM.

These solutions enable probabilistic sampling of sequences that exhibit arbitrarily complex

relational structure while also maintaining natural, fully Markovian transitions and allow via

low Markov orders a broad range of expression.

78

www.manaraa.com

Chapter 6

Computational Creativity: Theory and Application

6.1 Introduction

Computational creativity (CC) is a subfield of artificial intelligence that has been described

as “the philosophy, science and engineering of computational systems which, by taking

on particular responsibilities, exhibit behaviours that unbiased observers would deem to

be creative” [18]. As compared to intelligence tasks, tasks requiring creativity pose a

particularly di�cult challenge because whereas intelligence tasks typically involve some

notion of “optimality” (e.g., maximize accuracy on a particular task), creativity rarely has an

objective standard by which to demonstrate success. How, for example, does one objectively

decide the more creative of two pieces of art? The discussion of how to define “creative”

focuses typically on questions about value, novelty, intention, and perhaps surprise [6].

Though agreeing on a precise definition of “creative” is unlikely, we know that there

exist generally agreed upon notions of what is more and less creative. Indeed it is (usually)

thanks to these agreed upon ideas that some art never leaves the Louvre and other artwork

never leaves the refrigerator door. Creativity is repeatedly heralded as a fundamentally social

phenomenon [23].

In the field of AI many examples can be found of computers outperforming humans

on tasks of intelligence (e.g., [74]). The same cannot as yet be said of CC. A common belief is

that creativity is fundamentally a human enterprise beyond the reach of algorithms. Whether

computers are or will ever be “creative” may not be as important as recognizing what we

stand to gain in the process of trying, what we stand to learn about ourselves and about

79

www.manaraa.com

our computer counterparts, about what is creativity, what factors create the perception of

creativity, and how creativity is evaluated.

Colton and Wiggins [18] once called CC “the final frontier” of AI. That frontier is

admittedly not a static boundary, but is expanding through continued e↵orts to lay bare the

essential characteristics necessary for creativity. One might ask, “Where is the frontier now?”

The purpose of this paper is to outline a set of some salient characteristics of creativity that

have evolved from these continued discussions so far. Often discussion focuses on one or a

few specific characteristics at a time, and there is certainly great value in these concentrated

discussions. Our focus here, however, is to consider them in aggregate and to suggest that in

developing CC systems, our individual and collective success may result as much from the

combination of these characteristics as from their independent elaboration. We do not claim

the list of characteristics we consider here to be comprehensive, but we have attempted to

identify what might be currently considered the stanchions of the CC frontier.

We will start out by examining some of the foundational work discussing these

characteristics. We then demonstrate an applied example of these characteristics in a novel

system for composing lyrical music in the popular music domain. We then discuss some

principles of how creative systems are evaluated and demonstrate an example of these

principles of evaluation in assessing the creativity of our example system.

6.2 Characteristics of Creative Systems

The characteristics of creative systems represents a set of seven attributes that are necessary

(though perhaps not su�cient) for the perception of creativity. We are far from the first

to suggest a list of characteristics that are essential to creativity. Colton et al. [21] for

example list behaviors that, if absent, enable audiences to “too easily label software as

uncreative.” Their list includes skill, appreciation, imagination, learning, intentionality,

accountability, innovation, subjectivity, and reflection. Ventura [79] presents a view of how

a CC system should be built, discussing the aspects of domain, knowledge base, aesthetic,

80

www.manaraa.com

representation, generative, evaluation, conceptualization, and translation. There is significant

overlap between these lists as well as with the list we present here. Unlike these other works,

however, we present a concrete system to demonstrate the list we will present and exemplify

the evaluation of our list of creative characteristics using this system. In some sense this is

precisely what has been recommended in building CC systems [38]: establish a definition of

creativity and then demonstrate a system that meets that definition.

The characteristics we define as necessary for creativity are:

1. being generative;

2. using knowledge representation;

3. exhibiting intentionality;

4. possessing an aesthetic;

5. leveraging domain knowledge;

6. having autonomy; and

7. being self-evaluative.

In the discussion that follows, we use the term individual to refer to a human, system to refer

to a computer, and agent to refer indiscriminately to either a human or a computer.

6.2.1 Characteristic #1: Generative

In speaking of a generative system, we are referring to the ability of a system to produce

artefacts belonging (possibly with some subjectivity) to some broader, culturally defined class

that can then be subsequently argued to be more or less creative in the context of that class

[82]. Generated artefacts can include traditional creative artefacts such as a piece of music,

a poem, or a painting, but can also include artefacts that are less traditionally considered

examples of creativity but which nonetheless require and exhibit creativity (e.g., describing

production methods [69], process description [17], evaluations of creativity [20], identification

of meaning and relationships [56], decision-making, strategy formulation, etc.).

81

www.manaraa.com

A spectrum of generative system types exist including stochastic systems that generate

randomly; plagiarist systems that regenerate existing artefacts without internalizing them;

systems that regenerate existing artefacts from internalized memory; systems that generalize

from an inspiring set; systems which generate and filter through self-evaluation; systems

which generate using a knowledge-base; and creation with the aid of perceptual faculties [78].

Debate exists as to whether a system can be evaluated solely on the merits of generative

ability. Boden [6] and Kasof [39] assert that knowing the process of a creative system is

essential to determining its creativity. Ritchie [69], on the other hand, makes the “contentious

working assumption” that humans evaluate the creativity of one another based on empirically

observable factors alone and should do the same when evaluating computational creative

systems. Ritchie also, however, acknowledges that an artistic process can be separately

evaluated as its own abstract artefact. We might suggest that the approach humans take

to evaluating creativity is varied—some basing assessment on solely observable factors with

others relying on unobserved or contextual elements—and consequently where possible it is

helpful (at least to the evaluator) to include with the generated artefact some description of

the generative process (cf. [17]).

An on-going challenge is deciding what is necessary beyond “mere generation” in

order to establish that a system is creative. It is generally argued that as a bare minimum a

system must be demonstrated to possess knowledge and to be capable of producing both

novelty and value [6]. More stringent critics may argue that there should be some evidence

of intentionality in the novelty and value that are produced [79].

There is also a distinction made between generating candidates and generating final

artefacts. In the former case agents (human and computer alike) express their creativity

through a sort of “generate and test” procedure where many artefacts are generated, but few

are chosen for public evaluation. In the latter case agents take a “do it right the first time”

approach, with the goodness “baked-in” the artefact [78]. In this approach, every generated

artefact is publicly evaluable. Of course, in practice it is often the case that a system may

82

www.manaraa.com

combine the baked-in and filtration methods. For the purposes of this characteristic, it is

su�cient to say that a system at some stage generates artefacts for external evaluation.

In the realm of computational creativity, generation has been accomplished in a variety

of ways including rule-based systems, probabilistic grammars, evolutionary computation,

(recurrent) neural networks, (hidden) Markov models, and generative adversarial networks.

6.2.2 Characteristic #2: Knowledge Representation

A knowledge representation system is a system which, in the context of a particular problem

domain, defines a structured model of the problems defined by the domain, of the cognitive

process for solving these problems, and of the artefacts themselves. Particularly in representing

artefacts there is often a distinction between the internal (or genotypic) and external (or

phenotypic) representations, which in some cases results in blurring the line between a

cognitive process and the artefact it creates [79].

The concept of representation addresses more the question of how knowledge should

be modeled (whereas the concept of domain knowledge addresses what or which knowledge).

In many domains the external representation of artefacts is consistent across systems and

is prescribed by the domain. In other domains (e.g., story generation) multiple external

representations might exist (e.g., cinematographic, written, spoken) or might vary according

to the social context (e.g., choice of natural language).

Internal knowledge representation, particularly of cognitive process, is in some cases

conflated with the choice of generative model [79]. Diverse internal representations are

sometimes reflective of di↵erent human cognitive models for explaining the generation of

artefacts. The choice of internal representation can result in varying abilities to generalize

knowledge within or across domains [42], and many di↵erent internal representations may be

possible for the same external representation [78].

With regard to the internal representation of artefacts, it is common within some

domains for creative agents to have shared representations, often as a result of the evolution

83

www.manaraa.com

of language which describes abstract elements of artefacts of the domain. Jazz musicians,

for example, commonly represent music (ultimately an acoustic artefact) using lead sheet

notation—a form of abstract symbolic music. Although a piece of symbolic music might

be considered an external artefact representation, it is not common that we admire sheet

music as a creative work. Rather it is understood that the sheet music represents an as yet

unrendered artefact and might therefore be thought of as an (external) internal representation.

The same might be said, for example, of a manuscript for a stage play.

In CC systems, some forms of knowledge representation are manually crafted (e.g.,

rule-based systems or predefined grammars) whereas others are designed to let the system

“wire” itself or learn its own representation from observing existing domain artefacts (i.e.,

machine learning). The hierarchical Bayesian program learning model is an example of

a model that leverages both manual and learned models by hand-crafting a hierarchy of

human-level concept models each of which is then trained from data [14, 42].

6.2.3 Characteristic #3: Intentionality

A creative system, in expressing its creativity, must do so with some intentionality—that is,

a guided focus towards a particular objective [1, 78]. An intentional system is a deliberative

and purpose-driven system whose artefacts are the result of a directed process [78]. Ackerman

et al. [1] suggest that intent is the result of a system’s ability to observe and evaluate its own

success in accomplishing goals.

Guckelsberger et al. [30] argue intentionality involves more than simply accomplishing

an objective; it requires that a system choose its own objectives that it then seeks to

accomplish. DARCI [56], for example, derives its own intention in visual artistic creativity

from an existing image. This ownership of the intention forms the basis of the system’s ability

to assign value and to engage in reasoning. Thus the most authentic form of intentionality is

an autonomous intentionality.

84

www.manaraa.com

Intention can be focused on objectives related to content, style, external impact, type

of generative act [20], or other facets of creativity. It can be narrowly focused or purposefully

broad. In this latter sense every creative system might be considered to reflect at least some

minimal intention: the intention to generate an artefact. Although the creative contribution

of such an intention might seem diminished, neither should it be assumed that perceived

creativity and focused intention increase commensurately. If the intention is too focused,

then it removes the potential for surprise (e.g., “create a painting like the Mona Lisa” versus

“create the Mona Lisa”). To e↵ectively enhance the perception of creativity, intention must

be focused enough to suggest challenge without being so focused as to suggest determinism.

(This is strikingly similar to the balance required for inducing flow states as described by

[23].)

6.2.4 Characteristic #4: Aesthetic

Also relevant to how a system directs its decision-making is an aesthetic, which, as contrasted

with an intention, plays a more persistent role in determining style [41]. The (lack of) ability

to have attitudes or feelings about a creative domain generally are what Papadopoulos and

Wiggins [63] lament as “the big disadvantage” that computational systems have in comparison

to humans. [41] defines an aesthetic as an “opinion, belief, or attitude related to some of the

underlying principles of art.” It describes a philosophy of art, a set of values or beliefs about

what is beautiful and good [53]. It represents a “cognitive mode” and an “ability to make

judgments of value” [41]. In short we think of an aesthetic as an opinion, belief, or attitude

about principles of art (in the broadest sense of that term) within a domain that involves

some cognitive awareness and which serves to facilitate judgments of value.

An aesthetic has commonly been cited in works describing properties of creative

systems. Boden [6] describes it as a “pre-existing mental structure” or “hidden mental faculty

which has positive evaluation built in to it.” Wiggins [82] explains it as a “set of rules”

for evaluating concepts according to appropriate criteria. Ventura [79] suggests that the

85

www.manaraa.com

simplest implementation of an aesthetic results from the system designer manually encoding

an aesthetic. Colton et al. [20] argue that more creative systems invent their own “aesthetic

measure,” which they describe as a function mapping an artefact to a real value between

0 and infinity representing “the value of the results of the creative acts.” Jennings [36]

describes an autonomous system as one possessing the ability to initiate and guide changes to

its “standards” and generate its own “opinions.” We have argued elsewhere that one possible

metric that a system might use in selecting its own aesthetic is the aesthetic’s explainability

[8].

Qualities that might be considered in an aesthetic include: skill, imagination, and

appreciation [17]; as well as value and surprise [6]; complexity [33]; order [5]; and entropy

[73].

6.2.5 Characteristic #5: Domain Knowledge

Domain knowledge includes understanding of: the structure of artefacts within the domain,

requirements for inclusion within the domain, principles governing evaluation of artefacts

within the domain, as well as styles and norms that are frequently observed in the domain.

Whereas human creativity commonly draws upon and generalizes from a wide variety of

knowledge bases, computers—which typically lack perceptual ability—are limited to the

knowledge bases that their designers explicitly provide to them. This is a significant limitation

that puts computers at a disadvantage in many creative tasks (e.g., [10]).

Ritchie [69] establishes his discussion of assessing creativity on the notion that creative

systems are influenced—whether implicitly or explicitly—by knowledge learned from of a

subset of domain-representative artefacts (which he calls an inspiring set). This inspiring set

not only serves as inspiration during the generative process, but also enables the system to

evaluate the novelty and typicality of its creativity as a function of similarity to items in the

inspiring set.

86

www.manaraa.com

Ventura [78] suggests that incorporating knowledge bases increases the depth and

nuance in the generalization process. In a sense, the knowledge base allows the system

designer to indirectly “inject” knowledge into the system, allowing it to learn from examples

that are devoid of the designer’s (explicit) biases or “fingerprints.” An excellent example of

this principle is provided by Lake et al. [42] who break the problem of hand-written character

generation and classification into a hierarchy of simpler problems which the system then

e↵ectively learns using knowledge-based machine learning algorithms.

An added element of creativity is to use a dynamic knowledge base that grows and

changes by the addition and subtraction of information. This organic exchange of new

knowledge is one way in which creativity manifests itself as a fundamentally social construct.

A dynamic knowledge base also enables a system to improve as a result of self-evaluation

through the addition of evaluated (successful) artefacts to its knowledge base [67].

6.2.6 Characteristic #6: Autonomy

In a survey asking audiences about essential requirements or characteristics of creativity,

Mumford and Ventura [54] found that autonomy was the “top priority” among those most

skeptical that computers are or ever will be creative. Many of the responses from these

participants pointed to the algorithmic or programmed aspect of systems as being contrary

to their notions of what was required for a computer to exercise “independent thought.”

In reality autonomy is not a binary characteristic in creative systems, but rather

creativity manifests itself along a spectrum of autonomous actions. Attempts have been made

to articulate points along this spectrum. Ventura [78] lays out a progression of prototypical

creative processes whose increasing novelty, value, and intentionality, correspond heavily with

increasing examples of autonomy: systems that are least creative are random, plagiarize, or

memorize while those that are most creative require self-evaluation, the injection of knowledge

“without leaving the injector’s fingerprints,” and (at the acme) the ability to use perceptual

abilities to self-improve the system. The conclusion generally has been that the more ways

87

www.manaraa.com

in which a system can exert autonomy, the greater its ascribed creativity. In presenting the

FACE description of creative acts, Colton et al. [20] suggest that in addition to the specific

nature of the creative act, the “sheer volume” of di↵erent types of creative acts can serve to

compare the relative creativity of systems.

Jennings [36] suggests that to be considered autonomous, a system requires three

distinct criteria: autonomous evaluation, autonomous change, and non-randomness. The

first two refer to the ability of the system to independently decide how well a creation

appeals to its standards and to independently initiate and guide changes to these standards.

Non-randomness does not mean that a system cannot have elements of randomness, but

rather that decisions should generally reflect that the system operates (independently) on a

basis of persistent standards.

6.2.7 Characteristic #7: Self-Evaluative

The ability to observe and assess one’s performance is a fundamental prerequisite to the

self-awareness and intention that characterize creative agents [1]. Self-assessment can include

evaluation of novelty, typicality, interestingness, surprise, and aesthetic value. Self-evaluation

constitutes more than the ability to reflect on a system’s output; it also includes a decisiveness

about how well the output achieves the system’s goals [78].

As the term itself suggests, self-evaluation occurs without consulting outside opinions

and thus presupposes a certain autonomy [36]. As Ackerman et al. [1] point out, there

seemingly exists a paradox here: seeking outside opinions is an important guide by which the

system can choose to initiate and change its evaluative standards, but it should maintain

and apply a standard in self-evaluation that is distinct from those of other creative agents.

When and where self-evaluation occurs in the system can vary [78]. In post hoc filtering

systems, the self-evaluation takes place once the generative process is complete. In “baked-in”

approaches the system’s notion of what is good is injected within each step of the generative

process: the system does not create something unless it passes self-evaluation. Related to

88

www.manaraa.com

this idea is the concept of self-awareness which describes a system whose internal components

are aware of and influence other parts of the system thereby exerting metacreative control

throughout [47].

Pérez y Pérez and Sharples [67] suggest that self-evaluation, to be e↵ective, should

bear some influence on the generative process of the system. One way they suggest achieving

this is through the addition of generated artefacts to the system’s knowledge base. This can

also be accomplished through directly modifying the system’s generative model.

6.3 Pop*: An Applied Example

In the previous section we outlined characteristics of creativity. In considering a system in

which these characteristics are implemented we ask ourselves the following focused questions:

• Is the system generative? Does the system generate novel artefacts?

• Does the system incorporate some form of knowledge representation? Is the system

able to reason about the creative process?

• Is the system intentional? Does the system guide its decisions to accomplish an

objective? Is this objective chosen independently by the system?

• Does the system possess an aesthetic? Does the system have organized thoughts or

opinions about the underlying principles of art in its domain?

• Does the system leverage domain knowledge? Are the system’s artefacts typical of

the domain to which they claim belonging? How well does the system generate “good”

examples of this domain?

• Does the system exercise autonomy? Does the system make choices? Are these choices

non-random and reflective of the system’s standards?

• Is the system self-evaluative? Does the system observe and assess its own performance?

89

www.manaraa.com

In this section we demonstrate an example of a system that we assert possesses (to

some minimal extent) each of these characteristics and defend that assertion first through a

descriptive analysis guided by these questions and second (in the following section) through

the use of an evaluative questionnaire. The example we present is Pop* (pronounced Pop-

Star), a system for creating lyrical music in the popular music domain. By popular music

we mean lyrical, sectional-form music in the 20th and 21st century Western pop, rock, and

show tune genres. We first present an overview of Pop* and then examine how the system

implements each of the characteristics required for creativity.

6.3.1 Pop*

A high-level overview of the system is shown in Figure 6.1. The depicted composition process

occurs as a continuous cycle that is initiated when Pop* (which is constantly searching

Twitter for tweets of interest) finds a posting that appeals to its unique aesthetic. This tweet

serves as an inspiring idea from which Pop* formulates its own intention—a theme that the

system will communicate in the form of a novel music composition.

With the intention formulated, Pop* starts a learning phase in which existing lyric and

sheet music databases are filtered based on relevance to Pop*’s chosen intention. Pop* uses

these custom-built training sets to learn localized transitional patterns (i.e., Markov models)

for chords, rhythm, pitch, and lyrics. Besides learning models for local structure, Pop* also

learns global structural patterns (e.g., musical motifs, verse-chorus structure, rhyme schemes,

etc.) from existing sheet music which is subsequently used to create new music that has

meaningful patterns of repetition.

This generative process—customized to meet the system’s chosen intention—produces

a novel composition which is then scored and filtered according to an intention-driven self-

evaluation function. Compositions which pass the self-evaluation phase are then rendered in

audio and sheet music formats, and the cycle starts anew. More detail on these processes is

provided in the sections below.

90

www.manaraa.com

Figure 6.1: Pop* Overview. A high-level depiction of the process by which Pop* composes new
music. The system is inspired by social media posts that appeal to its aesthetic. This inspiration
guides the training of generative models through a targeted subselection of available lyrics and lead
sheets for training. Generated artefacts are output on condition that they pass an intention-driven
self-evaluation.

91

www.manaraa.com

6.3.2 Generative

Generative models of music are often implemented using grammars [76], neural models [35],

or Markovian processes [22]. The strength of all of these models lies primarily in generating

sequences with strong local cohesion, but with the weakness of failing to maintain global

cohesion as a result of stochastic sampling [35]. This is a significant challenge for CC systems

in music composition where patterns of repetition play a critical role in a listener’s processing

fluency and contribute to a song’s success and popularity [57].

In order to achieve local cohesive modeling without loss of global structure, Pop*

utilizes a brand of machine learning models called constrained or non-homogeneous Markov

models (NHMMs) [59]. These models—built from a Markov model and a set of constraints—

were first introduced to capture small-scale transition patterns while allowing for constraints

to be additionally imposed at various positions. These constraints can be used to create the

impression of global structure [2].

According to the Markov hypothesis, in computing the probability of a sequence of

random variables X1, . . . , Xn the probability of a state Xi depends only on the previous state,

Xi�1. That means

P (Xi|X1, . . . , Xi�1) = P (Xi|Xi�1).

A Markov model M = (⌃, P1, P) defines the set of elements or values ⌃ that X can take,

a set of initial probabilities P1(X1) for the assignment of X1 to each element x 2 ⌃, and a

set of transition probabilities P (Xi|Xi�1) for the assignment of successive states Xi�1, Xi to

all possible pairs of elements (x, y) 2 (⌃,⌃). The probability according to M of a sequence

X1, . . . , Xn is

PM(X1, . . . , Xn) = P1(X1)P (X2|X1) · · ·P (Xn|Xn�1).

92

www.manaraa.com

This is called a first-order Model because it looks back to only the previous state. A

d-order Model looks back to the previous d states to determine the next state.

A NHMM N = (n,M,C1) also models the probability of a sequence of random

variables X = X1, . . . , Xn. Defining N requires defining a sequence length n, a Markov

model M , and a set of unary constraints C1 = {c1, . . . , cn}. Each unary constraint ci 2 C1

represents a function fi(x) that maps possible assignments of Xi (i.e., x 2 ⌃) to either 1 (ci is

satisfied) or 0 (ci is not satisfied). A particular assignment x = x1, . . . , xn to X = X1, . . . , Xn

satisfies C1 if 8i xi satisfies ci. The probability of x according to N is

PN(x) /

8
>><

>>:

PM(x) if x satisfies C1

0 otherwise

The exact construction of N is detailed by Pachet et al. [59].

Pop* includes two improvements in how it implements NHMMs for musical sequence

generation. First, Pop* uses a modified NHMM that additionally defines a set C2 of

binary constraints. A binary constraint cij represents a function fij(x, y) mapping possible

assignments of Xi and Xj for arbitrary positions i and j to the set {0, 1}. A binary constraint

cij is satisfied for a particular assignment x = x1, . . . , xn to X = X1, . . . , Xn i↵ fij(xi, xj) = 1

and x satisfies C2 if it satisfies all binary constraints cij 2 C2. The details of this modified

implementation are presented in [13]. These binary constraints are essential to creating

rhymes, motifs, and sectional form structure. Figure 6.3 shows an example of an NHMM

built for binary constraints.

The second improvement Pop* includes is that in addition to learning M from data,

Pop* also learns constraints (particularly C2) from data. As compared with handcrafting

constraints, learning C2 dramatically increases the autonomy of the system which is able to

choose a novel structure for each composition without human involvement.

93

www.manaraa.com

M3M2M1

1.0

1.0
1.0

0.4

0.6
1.0

1.0

1.0

< "#$%&, () >

< "#$%&, (+ >

< ,"-., (/ >

< 0-1", (2 >

< ,-3%., (4/ >

< 5-3., (46 >

< 0-1", (46 >

< 5-3., (4 >

< 7#8-., (4/ >

< "#$%&, () >

< "#$%&, (+ >

< ,"-., (/ >

< 0-1", (2 >

< ,-3%., (4/ >

< 5-3., (46 >

< 0-1", (46 >

< 5-3., (4 >

< 7#8-., (4/ >

< "#$%&, () >

< "#$%&, (+ >

< ,"-., (/ >

< 0-1", (2 >

< ,-3%., (4/ >

< 5-3., (46 >

< 0-1", (46 >

< 5-3., (4 >

< 7#8-., (4/ >

< "#$%&, () >

< "#$%&, (+ >

< ,"-., (/ >

< 0-1", (2 >

< ,-3%., (4/ >

< 5-3., (46 >

< 0-1", (46 >

< 5-3., (4 >

< 7#8-., (4/ >

Figure 6.2: NHMM for Binary Constraints. Shown is a NHMM. Each column represents a position
in the sequence to be generated. Transitions between columns are derived from the transition
probabilities in the NHMM’s underlying Markov model. This NHMM is built from a DFA that
implements the binary constraint requiring the first and fourth positions of a sequence rhyme. The
DFA adds automaton state sensitivity to the Markov states as detailed in [13].

In practice the addition of binary constraints significantly increases the time required

to build the NHMM. Consequently, Pop* also implements a greedy depth-first search (DFS)

algorithm to build n-length sequences that are valid (i.e., have non-zero probability) according

toM and that satisfy both C1 and C2. The search explores a branch at depth i representing the

addition of an element xi to the growing sequence x1, . . . , xi�1 with probability PM(xi|xi�1),

never exploring branches that would not satisfy C1 or C2 and never exploring the same branch

twice, until a solution of length n is found. This alternative heuristic finds probabilistic

solutions much quicker albeit with inexact probabilities.

Pop* builds a NHMM N = (n,M,C1, C2) for each of the chord, pitch, rhythm, and

lyric viewpoints, resulting in the four models: Nc, Np, Nr, Nl, respectively. In practice, for

each model we use only a few hand-tuned unary constraints to enforce obvious requirements

and simplifying assumptions:

• a lyric sequence cannot start or end mid-word

94

www.manaraa.com

• a song must begin and end on the tonic of the contextual chord

• a song must resolve to the I chord

• a song cannot end on a note with duration shorter than a half note

• in Nc, Np, and Nr each sampled state represents an eighth note that is associated with

a specific o↵set within the music measure. Likewise Markov models for these NHMMs

are trained on eighth note interval tokens with a specific o↵set. Sequence variables

in these models are constrained to only allow tokens at each position that match the

position’s associated measure o↵set.

This represents the extent of any hard-coded unary constraints. In contrast, for each model

n, M , and C2 are learned from the knowledge base.

These models do not directly interact with each other. Rather the output from one

model is (in some cases) used to automatically add constraints to C1 and C2 for another

model. Note that n is the same for Nc, Np, and Nr which are all sampled as eighth note

intervals. Pop* builds and samples from models in the following order:

1. The chord model Nc is built and a chord sequence h = (h1, . . . , hn) sampled.

2. The pitch model Np is built to sample a pitch sequence p = (p1, . . . , pn). This model

incorporates a set of automatically inferred unary constraints requiring that on the first

and third beats of each measure the sampled pitch must belong to the set of pitches

that make up the previously sampled chord at that position (i.e., pi must belong in hi

if i mod 4 = 1). A pitch sequence is sampled.

3. The rhythm model Nr is built and a rhythm sequence r = (r1, . . . , rn) sampled.

4. The lyric model Nl is built to sample a syllable sequence l = (l1, . . . , lnl
) (we use nl

because the length of this sequence is di↵erent than that of the other sequences). The

number of syllables for this model (i.e., nl) equals the number of rhythm intervals ri 2 r

for which ri is a rhythm onset such that each syllable lk has a corresponding ri. The

95

www.manaraa.com

binary constraints for this model (i.e., the set C2) are determined automatically as

a combination of the binary constraints suggested from the mSW alignment and the

positions of rhythmic onsets in the rhythm sequence. If the lyric alignment suggests a

binary constraint cij on eighth note interval positions i and j, the algorithm instead

constrains the syllables lk and lm associated with rhythm intervals ri0 and rj0 where

i0  i and j0  j are the largest values for which ri0 and rj0 are both rhythmic onsets.

From r is also inferred a set of syllable stress (unary) constraints such that only

unstressed syllables are allowed on o↵beat rhythms (i.e., lk must be unstressed if, given

its associated rhythm interval ri, (i � 1) mod 2 = 1). Lastly phrase ending (unary)

constraints are also inferred from r ensuring that the final syllable in each 2 measure

window is a word-ending syllable (i.e., lk must be a word ending syllable if, given its

associated rhythm interval ri, @j s.t. j > i and j <= (i+ (16� (i mod 16))) and rj is

a rhythmic onset). A lyric sequence is sampled.

It is possible given M and C1 that no satisfying solution exists. In our generative process

if a satisfying chord or rhythm sequence cannot be found within a specified time limit, the

system chooses either a di↵erent training set (i.e., modifies M), a di↵erent song structure

(i.e., modifies C2), or both. If at any point a satisfying pitch or lyric solution cannot be

found, the algorithm reverts to the previous step and a new sequence of chords or rhythms

(respectively) are sampled.

There is nothing particularly special about the order in which the models are built

and sampled and this could easily be changed as long as the dependencies between the chord

and pitch models and the rhythm and lyric models are accounted for. In the interest of

allowing Pop* to write music for existing lyrics (e.g., a human lyricist), we plan to switch the

order of the rhythm and lyric models in a future version of Pop*.

The generation phase is complete when either a satisfying lyric sequence is found or

once a time limit has been reached. In the case that a satisfying lyric sequence is found,

the chord, pitch, rhythm, and lyric sequences are used to instantiate a new lead sheet. All

96

www.manaraa.com

sequences represent eighth note interval sequences, making them easy to merge, with the

exception of the lyric sequences which are sequences of syllables. In merging a sequence of

rhythm events (r1, . . . , rn) and pitch events (p1, . . . , pn) to form notes in the melody, a note

is created at positions i, where ri represents a rhythmic onset, with pitch taken from pi and

duration corresponding to the number of events in the rhythm sequence between ri and the

next rhythmic onset (rest rhythm events are assigned no pitch). The number of pitched notes

that this process generates corresponds to the number of syllables in the lyric sequence such

that each pitched note is assigned a syllable. Prior to rendering the lead sheet, chords and

pitches are transposed as necessary to ensure that no pitch in the melody is below an A

(MIDI value 57).

6.3.3 Knowledge Representation

The knowledge representation in Pop* is based on the notion of human-level concept learning

[42]. Human-level concept learning seeks to model the process by which humans iteratively

decompose problems into subproblems that can be solved individually and their solutions

recombined to solve the original problem. For example, rather than trying to learn a model

of hand-written characters, we might learn models of the number of strokes per character, the

number of substrokes per stroke, the origin and type of substrokes, etc. This is formalized

using a class of models called hierarchical Bayesian program learning (HBPL) models.

As we have discussed elsewhere [14], Pop* implements a HBPL model that decomposes

the problem of composing a lead sheet � for a given aesthetic A, as

P (�|A) = P (⌫|A) · P (⌧) · P (⌘|⌫, ⌧) · P (�|⌫, ⌧, ⌘) · P (⇢|⌫, ⌧) · P (�|⌫, ⌧, ⇢),

where

P (⌫|A) = distribution over intentions ⌫ given A,

P (⌧) = distribution over structure ⌧ ,

97

www.manaraa.com

Figure 6.3: Graphical HBPL model. This graphical model reflects the dependencies between
subconcept models in Pop*’s HBPL model for lyrical music composition.

P (⌘|⌫, ⌧) = distribution over chords ⌘ given ⌫ and ⌧ ,

P (�|⌫, ⌧, ⌘) = distribution over pitch � given ⌫, ⌧ , and ⌘,

P (⇢|⌫, ⌧) = distribution over rhythm ⇢ given ⌫, ⌧ , and ⌘, and

P (�|⌫, ⌧, ⇢) = distribution over lyrics � given ⌫, ⌧ , and ⇢.

A graphic representation of this HBPL model is shown in Figure 6.3.

Representing knowledge in this manner, Pop* is able to individually train each

submodel on a potentially di↵erent dataset: P (⌘|⌫, ⌧), P (�|⌫, ⌧, ⌘), and P (⇢|⌫, ⌧) can be

trained from a knowledge base of music and P (�|⌫, ⌧, ⇢) can be trained on a knowledge base

of lyrics. We use NHMMs to implement the models for sampling ⌘, �, ⇢, and �.

Because of this HBPL knowledge representation, Pop* has individual access to each

of the submodels which allows Pop* to communicate its internal representation in the form

of a lead sheet (see Figure 6.5). This is valuable for separating the symbolic composition

(which is Pop*’s targeted focus) from an acoustic rendering or arrangement of the artefact

(which involves an entirely separate creative domain).

Although the system is primarily designed to compose and not to arrange, Pop*

possesses some basic arranging knowledge (e.g., chord comping) so that compositions can

be also externally represented as audio for purposes of evaluation. Audio renderings are

98

www.manaraa.com

generated using Harmony Assistant (v9.8.1d) and Virtual Singer (v3.2). During evaluation a

human voice was used in rendering audio to increase the clarity of the composed lyrics.

In addition to the sheet music and audio artefacts, Pop* also outputs a short description

which explains its intention with the composition, the source of its intention, and a comment

about how well it feels that it accomplished that intention.

6.3.4 Intentionality

Pop* explicitly models intention as a vector of topics or emotions V = ((v1, w1), . . . , (vn, wn))

where (vi, wi) represents a topic and its weight. The system’s objective is to create music

that communicates each topic vi to an extent that is commensurate with its weight wi.

Pop* computes an intention V using Stanford’s Empath library [28]. Given a text

input iota, Empath creates Em(◆) = ((v1, w1), . . . , (v200, w200)) where vi represents one of a

set of 200 topics (defined by Empath) and wi 2 [0, 1] represents the strength of the semantic

relationship between ◆ and vi. The weights are normalized such that
P

i
wi = 1. To establish

an intention Pop* assigns V = Em(t̃) where t̃ is a text. The weights of all but the two highest

scoring topics in V are set to 0.0 to narrow and focus the system’s intention on the most

important topics (in the case of ties, scores for all topics with tying scores are kept).

6.3.5 Aesthetic

For Pop* an aesthetic A = (✓0, . . . , ✓m) a list of interests where ✓i represents a concept in

which Pop* is “interested”. These interests need not belong to the set of Empath topics,

but can be any keyword or phrase. In this formulation, Pop* has a favorable opinion of any

interest listed in A and no opinion about anything else. As suggested by Ventura [79], we

manually encoded A as A = (“being in love”,“feeling depressed”,“new beginnings”), but in

future versions we plan to implement an autonomous aesthetic in which the system is able to

initiate and guide changes to its aesthetic (as described by Jennings [36]).

99

www.manaraa.com

Emotion Topics
joy fear optimism lust
surprise disappointment hate shame
anger positive emotion envy disgust
sadness negative emotion love timidity

Table 6.1: Emotion topics. Scores for this subset of the default topic set for Empath [28] are used
to find tweets of interest that are emotionally charged.

Figure 6.4: Learning Structure. For each novel composition, Pop* chooses an existing song (in this
case Twinkle, Twinkle, Little Star) after which to model structural patterns of repetition. Pop* uses
a multi-Smith-Waterman alignment with a genetically trained scoring function to find structure in
(from left to right) chords, pitch, rhythm, and lyrics.

For each theme ✓i 2 A Pop* searches Twitter for (up to) 500 tweets from the prior 24

hours using ✓i as the search key to obtain a set of tweets T . From T Pop* filters retweets and

tweets of less than 100 characters. For each tweet t 2 T we compute the Empath vector Em(t).

An emotion score(t) is computed using the Empath vector Em(t) = ((v1, w1), . . . , (v200, w200))

as

emotion score(t) =
X

i

wi s.t. vi 2 E

where E is the subset of Empath topics representing emotions (see Table 6.1). Pop* retains

the set T✓i of ten tweets with the highest emotion score values for each interest ✓i. From
S

i
T✓i one tweet t̃ is selected at random as an inspiring tweet for the system?s generative

process.

100

www.manaraa.com

6.3.6 Domain Knowledge

Manual definition of domain-knowledge (e.g., hand-crafted rules or datasets) is advantageous

in that it gives the system designer control over the quality and types of knowledge from

which the system can learn. Clearly, however, an inability to learn from non-curated examples

limits the autonomy of the system. Thus, rather than employing manually defined domain

knowledge, Pop* is equipped with perceptual faculties that allow it to learn structural

knowledge and transitional patterns from existing data. This increased autonomy allows

the system to learn from a dynamically changing knowledge base without the interference

of a human. Pop* leverages domain knowledge through machine learning on two primary

knowledge bases: a lyric knowledge base and a music knowledge base.

The lyric knowledge base (LKB) is comprised of 369, 606 unique songs scraped from

www.lyrics.com. Lyrics L for each song in the LKB are annotated with an Empath vector

Em(L). Given its intention V , Pop* selects a subset of the LKB for training. This subsets is

determined by computing the Euclidean distance kV � Em(L)k for each song L in the LKB.

The k songs with the lowest distance are used for training where k varies as a function of the

length of the song to be generated, but generally stays within 3000-4000 songs.

Pop* uses the CMU dictionary1 (and the associated CMUSphinx grapheme-to-phoneme

converter [81]) to parse text into a sequence of syllables l = (l1, . . . , ln) (complete with syllable

stress and phonemic pronunciation) for data in the LKB. The Markov model for lyrics (used in

the construction of the NHMM Nl that approximates P (�|⌫, ⌧, ⇢)) trains initial and transition

probabilities based on a training syllable sequence l.

The music knowledge base (MKB) is comprised of 6, 673 pop music lead sheets. These

lead sheets, containing chords, melody and lyrics in Music XML format are derived from the

Wikifonia dataset. Lyrics L for each song in the MKB are annotated with an Empath vector

Em(L). Given its intention V , Pop* selects a subset of the MKB for training. This subsets

is determined by computing the Euclidean distance kV � Em(L)k for each song L in the

1http://www.speech.cs.cmu.edu/cgi-bin/cmudict

101

www.lyrics.com
http://www.speech.cs.cmu.edu/cgi-bin/cmudict

www.manaraa.com

MKB. The k songs with the lowest distance are used for training where k varies as a function

of the length of the song to be generated, but generally stays within 75-150 songs.

MKB lyrics are not used to train lyric Markov models both for the reason of annotation

inconsistencies in the MKB lyrics and also for the significantly increased amount of lyric

training data a↵orded with the LKB. The MKB is used to train Markov models for chord

sequences, melodic pitch sequences, and melodic rhythm sequences, which are subsequently

used to construct NHMMs Nc, Np, Nr that approximate P (⌘|⌫, ⌧), P (�|⌫, ⌧, ⌘), and P (⇢|⌫, ⌧).

When learning from the MKB, Pop* transposes all music to a common key signature (no

sharps or flats). For training, songs are discretized into eighth note intervals and Pop*

extracts a chord training sequence c = (c1, . . . , cn), a pitch training sequence p = (p1, . . . , pn),

and a rhythm sequence r = (r1, . . . , rn). Interval states in these sequences include information

about the beat within the measure on which the interval starts as well as: the chord root,

quality, and base (for chord sequences); the MIDI pitch value (for pitch sequences); and the

current note duration, the beats since the current note onset, and whether the rhythm is a

note or a rest (for rhythm sequences). Although it trains on songs in any time signature,

Pop* currently only composes music in 4/4. Tempo is chosen at random from the songs in

the MKB subset (resulting in more diversity than taking the most common tempo in the

subset).

Pop* is also endowed with perceptual faculties for detecting musical structure in

existing symbolic music (i.e., Music XML files). These faculties are modeled after the way

humans detect structure when listening to audio music through a process of mentally aligning

musical subsequences that share similar chord, pitch, rhythm, or lyric features. We refer to

each of these four di↵erent types of features as a viewpoint [22]. Structural alignments in a

single viewpoint are called motifs. Structural alignments across multiple viewpoints are what

create sectional form (e.g., a chorus results from overlapping repeats of lyrics, pitch, rhythm,

and chords).

102

www.manaraa.com

Alignment is performed using a multi-Smith-Waterman (mSW) self-alignment algo-

rithm. The details of the mSW alignment can be found in [11]. In summary, the mSW aligns

the song against itself for each viewpoint and finds all unique local alignments with alignment

scores above a learned threshold t. Each unique local alignment represents a motif. The

alignment scoring function used to calculate alignments considers di↵erent features for each

viewpoint. Weights for the scoring function (as well as the threshold t) are learned a priori

using a genetic algorithm trained on a small, structurally annotated subset of the MKB. For

rhyming constraints, the genetic algorithm failed to find a suitable scoring function. This

is an area of future work. For now manually annotated rhymes are used to learn binary

rhyming constraints.

For each new composition, Pop* selects at random a song in the MKB (currently

limited to one of the 5 structurally-annotated MKB songs due to inability to learn a suitable

rhyme scoring function) after which to structurally model the new composition. The length

of this training song will be the length of the new composition and represents the length

n needed to instantiate NHMMs Nc, Np, Nr for approximating P (⌘|⌫, ⌧), P (�|⌫, ⌧, ⌘), and

P (⇢|⌫, ⌧). Pop* performs a mSW alignment on this training song for each viewpoint (see

Figure 6.4). As detailed in [11], each viewpoint-specific alignment matrix represents a set

of binary constraints C2 that dictate what positions in the novel composition should be

constrained to have equivalent musical events in that viewpoint (i.e., create a motif). This

C2 is the final piece needed to build NHMMs Nc, Np, Nr, Nl.

6.3.7 Autonomy

Autonomy is exhibited when the system makes choices without explicit direction from the

designer and which are non-random. As mentioned in the theoretical discussion, this autonomy

occurs along a spectrum. For example, a system that autonomously chooses an intention

based on its aesthetic is less autonomous that a system that in addition autonomously chooses

its aesthetic. We do not claim that Pop* is autonomous in every aspect of its implementation

103

www.manaraa.com

(e.g., it does not choose its aesthetic). However, we do claim that Pop* implements autonomy

in three principle ways: in choosing an intention, in choosing a relevant knowledge (sub)base,

and in self-evaluation.

Pop* does not have a fixed intention but rather derives its intention V from a tweet t̃.

This choice of t̃ (and therefore V) is non-random because the probability of choosing a tweet

depends heavily on the system’s aesthetic A. This choice is also not the result of explicit

direction from the designer: besides having dictated A, humans play no role in the selection

of t̃. Thus we argue that Pop* autonomously chooses its intention.

Pop* selects a training set from its knowledge bases that relates to its intention V .

The selection is not random because the probability of choosing a final training set depends

heavily on V . Although the designer chooses the larger knowledge base from which the

training set is chosen and has indirectly influenced the choice of V , there is no explicit

direction about what the relevant training data subset should be. Because the selection is

neither random nor explicitly directed we argue that this represents an autonomous aspect of

the system.

Autonomy is also exhibited in Pop*’s self-evaluation (the details of which are discussed

in the next section). In the self-evaluation process, the decision of whether or not to keep

a song is not random but depends heavily on how well the song relates to its intention V .

Neither does the system receive any explicit direction from the designer about whether or

not to keep a song. As this decision is neither random nor explicitly directed, we argue that

it reflects a third way in which the system exhibits autonomy.

Both in selecting relevant knowledge and in self-evaluation, autonomy is a↵orded

because the system possesses an intention. This underscores the important role that intention

plays generally in enabling autonomy.

104

www.manaraa.com

6.3.8 Self-Evaluative

For a given intention vector V Pop* is given 6 hours to compose up to 10 candidate

compositions using the same training sets (i.e., Markov models M), but each with a potentially

unique structure (i.e., lengths n and binary constraint sets C2). The system then evaluates

the candidates to find the composition that it “likes” the best which is subsequently output

for evaluation.

Pop* implements a self-evaluation as a scoring function S(�) on a composition � =

(V, c, p, r, l) that considers a linear interpolation of factors

S(�) = � + � + E +R

where � = kV � Em(l)k; � = |uniq(l)|/|l| (i.e., the ratio of the unique word count to the

total word count); E =
P|p|�31

1 |uniq((pi, . . . , pi+31))| (i.e., the average number of unique pitch

values in p in a 4-measure sliding window); and R = |{pi|pi 2 MIDI [60, 76]}|/|p| (i.e., the

fraction of pi 2 p for which the MIDI value of pi is in the range [60,76]).

The role of � is to assess how well the lyrics l reflect the system’s intention V . � plays

the role of ensuring that the system does not resort to a lyric sequence of repetitive words.

As a way of measuring “catchiness” or in other words managing boredom, E represents a

collective density value (as suggested by Eigenfeldt et al. [26]). R represents the singability

of the melodic pitch sequence.

The candidate � with the highest self-evaluation score S(�) is output for evaluation.

6.4 External Evaluation of Creative Characteristics

Ritchie [69] asserts that it is only through the external artefact—without any knowledge of

the system’s process—that a system’s creativity should be assessed. The reader may note

that we have limited our discussion to characteristics of creativity in systems without regard

to characteristics of creativity in artefacts. Although we have not explicitly addressed these

105

www.manaraa.com

Figure 6.5: External Artifact Representation. Pop*’s creative process results essentially in a pop lead
sheet (colored boxes highlight structural patterns of repetition). With regards to this composition,
Pop* wrote: “I spend a lot of time thinking and reading about being in love, and I read this tweet
from my friend Joel Alcaraz posted Tuesday, June 12, 2018 at 6:34 PM: ‘It’s interesting being in
love with a person, I told Ashley my love for him is like dancing on the edge of a cli↵ always feeling
a sense of trepidation before the grand leap into his world. But in the end no matter my fear I make
a leap of faith. Is that what love is? ’ It got me thinking about fear and love themes and I couldn’t
help but write this song: ‘And I think I am just a lie ‘Cause when you find yourself behind And I
think I am just a lie’. At the beginning it was fear and love, however it really wound up with more
of a deception and negative emotion theme. I hope that you like it.” This composition rated
highest overall in an external evaluation of 12 randomly selected Pop* compositions.

106

www.manaraa.com

latter characteristics (e.g., novelty, quality, and typicality as discussed by Ritchie), many of

them were mentioned in defining the characteristics of creativity for systems.

In contrast to Ritchie’s assertion, we, like many others (e.g., [6, 17, 39]), suggest

that consideration of the system’s process is essential. With human creators, (reasonable)

assumptions are often made, given context and presentation, about their process that suggest

(or not) an attribution of creativity. As illustrated by Ventura [78], there exists a wide range

of creative ability in computational systems that can appear to possess similar creativity

when only their external artefacts are considered.

Evaluating some characteristics of creativity is easier with the aided understanding of

how a system works (much like the understanding provided here). Autonomy is an example

of such a characteristic. Just as it is hard to understand with what autonomy a child cleans

his room without knowing the inner workings of his family relationships, so also is it hard

to understand with what autonomy a system creates a particular artefact without knowing

the process of its relationship to the designer. When it comes to convincing skeptics that a

system is really the one making the choices, no amount of explanation will su�ce for taking

the hood o↵ to “see for yourself.”

Some forms of evaluation depend strictly on an understanding of a system’s process.

For example, the benchmark systems outlined by Ventura [78] against which a CC system can

be compared for creativity are di↵erentiated primarily by their processes, without regard for

system output. Likewise the FACE descriptive model presented by Colton et al. [20] requires

knowing in which types of creativity the system is engaging in order to comparatively assess

creativity.

Individual evaluation based on an understanding of process may be convincing but

does not serve to establish results with any statistical rigor, nor does it allow even the

examiner to consider, to any significant extent, the output of the system. Only empirical

validation will satisfy these ends. For this reason each of the characteristics of creativity

107

www.manaraa.com

(including autonomy) must, of course, be validated to whatever extent is possible by audiences

to whom the process may likely be inaccessible.

Jordanous [37] proposes the SPECS process which requires stating one’s definition of

what it means to be creative, and then creating and implementing assessments to demonstrate

that creativity has been achieved. In laying out the characteristics of creative systems we have

(to a reasonable extent) provided such a definition of a creative system. To implement an

assessment demonstrating our achievement, we constructed a survey with questions designed

for external assessment of each of the characteristics of creativity.

6.4.1 Evaluative Survey

We conducted an evaluation in the form of an online Qualtrics survey of 125 people. In each

survey, the system presents itself: “Hi, my name is Pop*! I am a computer system that

composes pop, rock, and show tune music. I read a lot on Twitter. When I find a tweet that

I like, then I compose music.”

The survey is conducted in two stages. The first stage is an evaluation based solely

on external artefacts. The second stage is an evaluation based on an informed understanding

of Pop*’s process.

Evaluation Based on Artefacts

The survey first invites the participant to listen to and evaluate two original Pop* compositions.

Compositions for evaluation were chosen completely at random from Pop*’s artefacts generated

between 6:41 PM June 11, 2018 and 4:12 PM June 12, 2018. Twelve unique compositions

in all were included in the evaluation. These songs include significant variation in chords,

melody, lyrics, length, structure, tempo, modality, key, and intention.

For each composition, the system’s generated description of the piece is presented

(e.g., see caption to Figure 6.5) along with an audio recording of the song. After reading

108

www.manaraa.com

the description and listening to the audio, the participant is asked seven questions (response

spectrum shown in parentheses):

1. How would you rate this composition overall? (out of 5 stars)

2. How would you rate the lyric composition in this piece? (out of 5 stars)

3. How would you rate the music composition in this piece? (out of 5 stars)

4. How would you rate the global structure (i.e., form, layout) in this piece? (out of 5

stars)

5. How typical is this song of pop/rock/show tunes music? (“Not at all typical” to “Very

typical”)

6. How novel is this song compared to other pop/rock/show tunes music? (“I’ve heard

this song before” to “I’ve never heard anything like this”)

7. How well did Pop* communicate its intention (X and Y) through the music? (“Music

does not reflect intention” to “Music reflects intention well”)

The intention, stated as a summary of the two most salient topics X and Y in V , is reiterated

with question 7 to ensure the listener can accurately determine the answer to this question.

Each question is rated on a scale from 1 to 5, the first four questions being presented as star

ratings with no labels (half stars are allowed) and the remaining three as Likert scales (that

allow only whole number ratings) which only label the lowest and highest ratings in defining

the spectrum [46].

Evaluation Based on Process

Upon completion of the artefact-based evaluation, the participant is then introduced to the

process of Pop*. This introduction consists of a brief description accompanied by a simplified

version of Figure 6.1. The simplified version uses the labels “Tweets”, “Interests”, “Intention”,

“Lyrics”, “Sheet Music”, “Generation”, “Evaluation”, and “Output” in place of the pertinent

109

www.manaraa.com

labels in Figure 6.1 to avoid overtly biasing answers and to agree with the inner-workings

description:

“Pop* has three specific interests: being in love, feeling depressed, and new

beginnings. The composition process starts when Pop* searches for tweets related

to its interests. From these tweets the system chooses a tweet that conveys feeling.

Pop* uses the major themes of the tweet to formulate an intention: a theme

that the system will communicate through music.

“Pop* next searches for existing lyrics and sheet music that are related to

its intention. Pop* uses the lyrics and sheet music to learn patterns of chords,

rhythm, pitch, lyrics, and structural motifs. It uses this learning to generate

multiple compositions. Pop* evaluates each composition and chooses one that

best reflects the system’s intention and has the catchiest music.”

The participant is then given 5 Likert questions:

8. How convinced are you that Pop* internally represents knowledge of music? (“Not

convinced” to “Very convinced”)

9. How convinced are you that Pop* has an opinion, belief, or attitude about what makes

music “good”? (“Not convinced” to “Very convinced”)

10. How much autonomy would you say Pop* has to make decisions on its own? (“No

autonomy” to “Complete autonomy”)

11. How good is Pop* at self-evaluation (i.e., judging its own success)? (“Poor self-

evaluation” to “Excellent self-evaluation”)

12. How would you rate the creativity of Pop* (not the creativity of its designer)? (“Not

creative” to “Very creative”)

110

www.manaraa.com

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Max Score 3.20/3.25 2.63/3.00 3.50/3.54 3.38/3.33 3.14/3.50 3.77/3.76 3.40/3.67
Avg Score 2.66/2.81 2.09/2.29 2.98/3.04 2.75/2.91 2.86/2.90 3.16/3.28 2.88/3.02
Min Score 2.20/2.48 1.50/1.83 2.54/2.67 2.33/2.50 2.63/2.50 2.60/2.95 2.47/2.48
Best Song 2.71/3.25 2.29/3.00 2.71/3.13 3.00/3.13 3.14/3.50 3.57/3.31 2.86/3.13

Table 6.2: Results for Evaluation Based on Artefacts. Shown are results based on the average ratings
for each song. Columns correspond to survey questions 1 through 7. For each result is shown the
average musicians’ rating in italics followed by the average of all ratings. “Best Song” is the song
with the highest overall rating score across all participants (shown in Figure 6.5).

We additionally invited the participant to explain via free response their answer to

question 12, to add other comments, and to provide some demographic information to control

for biases:

13. Do you consider yourself a musician? (“Yes” or “No”)

14. Do you know personally either of the humans that designed this system? (“Yes” or

“No”)

15. From your perspective will computers ever be capable of being autonomously creative?

(“Absolutely”, “Not sure”, “Never”)

Of 125 respondents, 68 (54.4%) considered themselves musicians and 77 (61.6%)

reported knowing personally the designers. There were 53 respondents (42.4%) that believed

“Absolutely” that computers are capable of creativity, 6 (4.8%) that believe they “Never” will

be, and 66 (52.8%) that were “Not sure”.

6.4.2 Results

Results of the survey are found in Tables 6.2-6.4. The “Best Song” reported in Table 6.2

refers to the song with the highest average ratings for questions Q1 (overall rating), Q2

(lyrics), and Q5 (typicality) among all participants and is shown in Figure 6.5. All scores are

out of 5 with 1 representing the minimum score possible. This suggests 3 as the score that

divides above average from below average. In future development iteration cycles we can use

111

www.manaraa.com

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

Knows
us

Survey Avg 2.93 2.36 2.93 3.00 2.64 4.00 3.00 3.53 2.87 3.40 2.88 3.56
Song Max 3.40 3.11 3.73 3.53 3.33 4.00 4.08

Doesn’t
know us

Survey Avg 2.00 2.00 2.20 2.40 2.80 2.80 2.00 2.90 2.60 3.04 2.48 3.08
Song Max 3.29 2.88 3.22 3.33 3.71 3.78 3.20

Table 6.3: Familiarity Bias. Shown are the scores separated according to participants’ answers
to survey question 14 (familiarity with study designers). For each category is shown the average
over all responses for each question as well as the highest individual average song scores for each of
survey questions 1 through 7. With few exceptions the system was rated as more creative by those
who are familiar with the system designers.

these ratings to measure progress. Our purpose here is to use the external evaluations to

assess the presence or absence of the characteristics of creativity. Each is considered in turn.

Familiarity Bias

Fundamental to the notion of achieving creativity in computational systems is that they are

deemed to be creative by unbiased observers. Although there is often bias against computers

being creative, familiarity represents one scenario in which there might arise a bias towards

ascribing creativity.

We find that there is a noticeable drop in scores between the group of survey partici-

pants who responded “Yes” and those that responded “No” to knowing one of the system

designers personally, both in the overall average scores for each question, but also in the

highest song-specific averages (see Table 6.3). There was not a noticeable skew in beliefs about

the ability of computer creativity among the group not familiar with the system designers.

Even given the familiarity bias, we see the same general trends in which aspects of

creativity participants are most willing to ascribe to Pop*. Novelty scores (Q6) have the

highest average and max scores for both groups. Likewise both groups were least impressed

by the system’s lyric abilities (Q2). Significant to our work on incorporating structure is the

fact that both groups have elevated ratings (for Q4) for the structure in Pop* compositions.

Also significant from this study of familiarity bias is the max overall song rating (Q1)

from the unbiased group. This rating is significant for two reasons. First, the song that

112

www.manaraa.com

Musicianship Belief about computer creativity
All Groups Musicians Non-Musicians Believers Skeptics Unbelievers

Q8 3.29 3.07 3.54 3.38 3.29 2.50
Q9 2.77 2.59 2.98 2.94 2.67 2.33
Q10 3.26 3.21 3.33 3.43 3.20 2.5
Q11 2.73 2.56 2.93 2.79 2.70 2.5
Q12 3.38 3.25 3.53 3.36 3.40 3.33

Table 6.4: Results for Evaluation Based on Process. Shown are average scores for survey questions 8
through 12, broken down by demographic.

earned this rating is the same song that earned the highest Q1 rating among all participants

(i.e., the “Best Song” shown in Table 6.2 and the song shown in Figure 6.5). Second, the

song with the next highest Q1 score among unbiased participants earned a rating of 2.90—a

full 0.40 below the best song. In short, this song appears to emerge across several groups as

being the most well-liked song.

Generative

Clearly the system generates artefacts. The question that remains is whether these artefacts

are novel as assessed by survey question 6. The average and max novelty scores for both

musicians and non-musicians were the highest scores for any of the characteristics of creativity

as evaluated solely based on artefacts. One respondent (not familiar with the system designers)

responded that “Creativity is the ability to create new things. Pop* can clearly create new

things.”

There were also some participants that did not feel Pop* expressed novelty. One

respondent wrote that the songs (s)he heard “did not strike me as very original and creative.

Sorry.” This criticism may be in part a reflection of the two songs that this participant was

randomly assigned. Pop*’s perceived novelty might be improved by explicitly measuring

distance between the songs it outputs to ensure some minimal novelty. However, it is

important to note that it is unreasonable to assume that simply because one or a few songs

113

www.manaraa.com

chosen at random from a system (or a human) composer do not exhibit novelty that this

necessarily means that the agent is incapable of novelty.

Knowledge Representation

Most groups were willing to cede that Pop* had at least some internal representation of

knowledge. Even the rating for musicians—who by definition might be considered those who

possess such a representation themselves—was (slightly) above average. Those unfamiliar

with the system designers rated knowledge representation as slightly below average in Pop*.

Related to the notion of process reflected by an internal knowledge representation,

one respondent wrote that “combining ideas and generating from them something completely

new is the epitome of creativity, regardless of whether or not the process was automated.

Thus, even though the machine is a machine it does mimic, in some way at least, some form

of creativity.”

Intentionality

The question of intentionality focuses on how well the system’s intention is reflected in its

output as assessed from knowledge of the artefact alone. Intention received relatively low

scores, particularly from the group of respondents who are familiar with the system designers

who rated the intentionality of Pop* well below average. This is an area of Pop* that needs

some improvement.

Several comments were made to explain these low intentionality ratings. One respon-

dent wrote: “Pop [sic] seemed to always start with something in mind but delivered something

di↵erent.” We assume that this comment is referring to the way that Pop* explicitly compares

the topics of its intention with the topics it perceives in its generated song and how these

often tend to be di↵erent topics. Based on this assumption this comment is valuable because

it may suggest one way that at least some audiences perceive intentionality: assessing the

success of the system in meeting its goals is based, at least partially, on whether or not the

114

www.manaraa.com

system believes it has met its goals. This is surely not universally the case; many if not most

observers autonomously assess the system’s success in meeting its goals. However, finding

ways to emphasize aspects in which the system believes it has achieved its intention may in

some cases improve the perception of intentionality.

There were at least a few observers who felt that the system had some intentionality:

“good at finding ideas and creating sounds to match those ideas and feelings.” This may result

from the fact that some songs exhibit intentionality better than others.

Aesthetic

The presence of aesthetic as evaluated by Q9 is a quality that Pop* also struggles to exhibit.

Of the 12 survey questions this attribute scored third lowest across the general survey

population as well as across the musical subpopulation. Among participants not biased by

familiarity, the question of whether or not Pop* has an opinion or belief was also answered

with ratings below average (though not far below those of the general survey group).

Although this is certainly an area for future work, one of the challenges in creating a

convincing model of aesthetic is that unlike novelty or even intention, aesthetic gets at the

heart of what many people see as the fundamental definitive di↵erence between computers

and humans. As one respondent succinctly put it: “It’s a machine, it has no autonomy or

beliefs.” Still some hope exists as exhibited in comments such as “there were some sentiments

communicated” and “Pop*’s music sounds . . . di↵erent enough to have its own style.”

Domain Knowledge

The survey question about typicality is directed at assessing how well Pop* has captured the

essence of the domain as learned from the lyric and music knowledge bases.

Typicality (Q5) was the only characteristic for which the group unbiased by familiarity

rated Pop* higher than the group biased by familiarity. This could be explained by the fact

that this word can have a negative connotation outside of CC. Thus the bias for this question

115

www.manaraa.com

might expect to err towards lower scores. Either way we consider elevated scores for this

attribute to be a good sign, especially given the parallel trends in the novelty score.

Also related to domain knowledge were questions Q2, Q3, and Q4 which rated Pop*’s

lyric model, music model, and structure model respectively. Ratings for lyrics were universally

the lowest ratings for any question with musicians in particular giving an overall average rating

of 1.50 to Pop* lyrics. Although Pop* has focused relatively little on semantic cohesiveness

of lyrics, it has focused a great deal on how lyrics should be e↵ectively combined with music,

e.g., to emphasize appropriate stresses and e↵ectuate rhyme. This subtlety was observed by

one commenter that wrote: “To put together lyrics to match the music . . . takes a lot of

creativity.”

Overall music ratings (Q3) were, on the other hand, among the highest scores for

any of the survey questions, suggesting that the models of chords, pitches, and rhythms are

learning and applying knowledge e↵ectively. Many made comments to the e↵ect of “the

generated chord structure of the two songs impressed me.”

Structure scores (Q4) were generally below average, although there were a few songs

that earned average ratings above 3.0. This is an area that would benefit from further

assessment about what kinds of impact the structure may or may not be having (e.g., does

structure make the song easier to remember or to get stuck in one’s head?).

One respondent remarked on the importance of leveraging domain knowledge in

creating the perception of creativity, explaining that their attribution of creativity to Pop*

was based on its perceived ability “to create songs based o↵ of lots of di↵erent information

and still make it sound appealing and applicable.”

Autonomy

Autonomy scored above average in nearly every group including those not biased by familiarity

with the system’s designers (the one exception was those with the belief that computer

creativity is impossible). Autonomy was rarely the highest scoring characteristic, and several

116

www.manaraa.com

of the comments against the creativity of the system were aimed at the absence of autonomy.

For example:

• “‘Pop’ [sic] follows the formulas really well, but the ideas are not innovative, they are

formulaic”

• “Pop [sic] follows a sequence of preprogrammed algorithms. I would therefore describe

the output of Pop* as being more representative of the creativity of its designer as well

as the thoughts/moods of the people giving input tweets.”

Mumford and Ventura [54] reported similar responses in their work to assess the

autonomy of CC systems. However, in their work what respondents thought was a computer

being creative was actually a human being creative. There exists a preconceived notion that

regardless of what occurs, “It’s a machine, it has no autonomy.” To this point Mumford and

Ventura [54] suggests that “even creative humans could be argued to be following a complex

set of chemical and psychological instructions”. An interesting future study might examine

how changing people’s perception about their own autonomy would impact their perception

of computer autonomy.

Self-Evaluative

The collective survey group rated the self-evaluative abilities of Pop* (based on an under-

standing of its process) lower than any other property of the system except its lyric generation

module. This may result generally from the perception that Pop* consistently composes below

average music (as manifest in responses to Q1). It may be hard to ascribe self-evaluative

abilities to a system that can’t even generate cohesive English. It may also stem from the

way that “Pop* seemed to always start with something in mind but delivered something

di↵erent”.

The question about self-evaluation (Q11) was included as one of the assessments based

on Pop*’s process with the thought that a knowledge of the process is critical to assessing

117

www.manaraa.com

whether the system uses a reasonable self-evaluation method. However, it may be that the

question of e�cacy in self-evaluation is better suited as an artefact-based evaluation based

on the notion that attributing success in self-evaluation depends on the reviewer agreeing

with the individual evaluations that the system makes rather than agreeing with the process

it uses to make these assessments.

Like creativity, each of its characteristic attributes happens along a spectrum. The

results of the evaluation do point out several opportunities for improvement. However,

the results also suggest that, at least to some minimal extent, Pop* possesses each of the

characteristics necessary for creativity.

Creativity

Assessing any one of the above characteristics of creativity may prove to be just as di�cult as

directly asking the question of interest: “Is the system creative?” In asking this question, we

were careful to explicitly di↵erentiate the creativity of the system and that of its designers.

Responses to this question (Q12) in the survey reported the highest scores of any other

characteristic across all groups: those familiar with the designers, those not familiar, musicians,

non-musicians, believers, skeptics, and unbelievers (the novelty score for those familiar with

the designers, which was higher than that of the group’s creativity score, is the only exception).

Scores across all groups were above average.

The high ratings to the direct question of Pop*’s “creativity” is quite remarkable. It

may suggest that, despite a relative lack of the other characteristics examined, creativity

can exist. Perhaps it might suggest the wrong criteria have been chosen, and that if we

have chosen the right criteria then the scores for those criteria would have been a better

reflection of the scores for creativity. However there seems a more probable explanation which

is that creativity is greater than the sum of its individual characteristics. In other words, the

118

www.manaraa.com

perception of creativity in computational systems can exceed the perception of individual

creative characteristics when these characteristics are found together.

6.5 Discussion

When systems are created that possess only one or a few of the defining characteristics of

creativity, it leaves the (already gaping) door open for skeptics of computer creativity to dwell

on the ways in which the system is not creative. The field currently benefits from a strong

foundation and understanding of some core requirements of creativity, and this foundation

must continue to be examined and reexamined. We can also, however, start to build on top

of that foundation, developing a new generation of holistic CC systems which will allow us to

examine yet undiscovered attributes and applications of creativity in computational systems.

Still in its early stages, CC has largely been defined by systems that exhibit one or

a few creative characteristics. This is understandable considering that endowing or aug-

menting a system with any one of these characteristics is a non-trivial task and that there

are cases where it might be desirable to focus exploration on a single characteristic. It is

important, however, that we embrace the challenge and keep an eye on the goal of holistic

computational creativity—the idea that creativity emerges from the confluence of the set of

creative attributes. An autonomous system is just that: an autonomous system. Likewise a

generative system is just that: a generative system. A system that possesses any one of the

characteristics of creativity is just that: a system that possesses one of the characteristics of

creativity. It is in possessing the sum of creative attributes that a system gains traction in

asserting itself, particularly among non-specialists, as creative.

We have identified seven common and fundamental characteristics that we believe to

be necessary (though perhaps not su�cient) for creativity. We have demonstrated the joint

application of these characteristics in an applied example of a music composition system.

In an exposition of the system’s process we have examined where these characteristics are

119

www.manaraa.com

manifest. We have externally evaluated this system for these characteristics through the use

of an evaluative survey using a combination of artefact-based and process-based assessments.

Our findings from these assessments suggest that the system does possess the characteristics

of creativity to varying extents, but that more importantly the system overall is perceived

to be creative. We have suggested that holistic CC—which focuses on systems possessing a

gamut of creative characteristics—represents a promising direction for future work in our

e↵orts to expand the “final frontier” of artificial intelligence.

120

www.manaraa.com

Chapter 7

Future Work and Conclusion

7.1 Summary

Our purpose has been to demonstrate that, as it contributes to creativity in computational sys-

tems for music composition, local and global structure can be jointly learned and implemented

using multiple Smith-Waterman self-alignment and relational constraints in non-homogenous

Markov models.

In Chapter 2 we demonstrated the hierarchical Bayesian program learning (HBPL)

for decomposing the music composition process into human-level subconcepts for learning.

This model forms the basis for allowing the system to focus learning on individual concepts

including local structure (i.e., models of harmony, pitch, rhythm, and lyrics), global structure

(i.e., motifs, sectional form, and rhyme schemes), and abstract concepts such as aesthetic and

intention.

In Chapters 3 and 5 we described how relational constraints improve upon the abilities

of unary constraints to enforce structural patterns of repetition and demonstrated their

implementation in non-homogenous Markov models (NHMMs). Whereas chapter 3 focused

on the implementation of relational constraints within the Markov window, chapter 5 focused

on the broader challenge of implementing relational constraints outside of the Markov window.

The local and global structure that is achieved in this manner is unique in that it does not

rely on “copy and paste” methods and therefore does not require a trade-o↵ between the

local and global cohesion.

121

www.manaraa.com

Chapter 4 described the multiple Smith-Waterman (mSW) self alignment algorithm

which we used for learning and modeling relational constraints for harmony, pitch, rhythm,

and lyrics. This learning allows the system to model arbitrary structure in novel compositions

without human interference. We showed how this learning can also be used to find verse-chorus

structures in existing music.

In Chapter 6 we put the contributions of relational constraints in NHMMs and mSW

together in implementing a system for lyrical, sectional-form lead sheet composition. This

system autonomously learns and generates local and global structure. We assessed the

creativity of this system based on its artefacts and process and found that artefacts generated

by the system e↵ectively implement structure as exhibited in strong ratings for novelty,

typicality, and creativity generally.

This work demonstrates that the combination of relational constraints in NHMMs

and learning via mSW self-alignment facilitates the learning and implementation of local and

global structure. This work also demonstrates that structure serves to improve the creativity

of computational systems.

Our research suggests several promising avenues for future work. We have developed

a system that possess an array of creative characteristics. In the process of evaluating that

system, we were able to identify the various strengths and weaknesses of the system. A critical

weakness that the system currently has is the generation of semantically cohesive lyrics,

fundamental to conveying meaning through music. Most of our work has not focused on this

aspect of the system, but future work in this area could include using constrained Models

to impose semantic structure on lyric sequences; extending the concept of non-homogenous

Markov models to create non-homogenous hidden Markov models using part of speech as a

hidden state for greater expressive power; creating songs that tell a story; and improving on

the existing algorithms for parsing semantic meaning from text.

Much of our work has focused on implementing structure in musical sequences: motifs,

sectional-form, rhyme schemes. We have made significant progress in this regard without

122

www.manaraa.com

compromising the autonomy of computational creative systems. And yet significant work

remains to be done here, as well. Learning rhyme schemes from data, for example, is

as yet unsolved and is a critical problem to being able to learn structure from arbitrary

inspiring sets. In our studies we have observed that this can be accomplished using multiple

Smith-Waterman alignment but requires implementing an appropriate alignment scoring

function. With structure in chords, pitch, and rhythm using hand-crafted scoring functions

was su�cient; but the sparsity of rhyming words makes rhyme scheme learning a unique

challenge. We hypothesize that using a learned scoring function (e.g., in the form of a neural

network) may be one way to overcome this challenge.

Future work could also examine to what extent our assumption about the importance

of sampling music as a complete Markov sequence is valid. Binary constraints have expensive

time and space requirements and it would be a meaningful contribution to the field to identify

where independence assumptions can (and perhaps should) be made in generating musical

sequences.

An exciting future project might also examine techniques for generalizing learned

structural data for the generation of novel structures in music. Currently Pop* blatantly

plagiarizes the structure of existing music (to the extent that structure can ever be plagiarized).

The challenge of how the system might learn to generalize from these structures is non-trivial.

In the more theoretical parts of the domain of computational creativity we have

examined characteristics necessary (but not su�cient) for creative systems. One aspect

of these characteristics that was not covered in our research was objective measures for

assessing these characteristics. In addition the idea of holistic computational creativity—

meaning the incorporation of a diverse set of creative characteristics for increased creativity

in computational systems—presents a promising new avenue of computational creativity

research. Although much research has focused on individual aspects of creativity, this holistic

approach may hold an unique key to discovering what is necessary to increasing the perception

of creativity in computational systems.

123

www.manaraa.com

Another aspect of Pop* that needs work is the development of an autonomous aesthetic.

Finding ways to implement an aesthetic such that the system can independently and e↵ectively

initiate changes to its aesthetic would not only improve Pop*, but would also benefit the CC

community which generally lacks good examples of these kinds of aesthetics. We have made

good progress in our recent attempts to outline principles that an autonomous system might

use in choosing an aesthetic [8].

A significant motivation in the study of computational creativity and musical metacre-

ativity in particular is the potential that music holds for being able to address anxiety

and depression. Pop* is su�ciently advanced to serve as a co-creator, making music more

accessible to non-musicians so that they can use it to communicate and connect with others.

We picture developing a mobile app that allows the user to compose lyrics to which Pop*

would generate complimentary musical arrangements. Such an app could allow us to examine

the impact that music and the creative process of composition have in helping people cope

with life’s challenges.

Lastly there are several ways that Pop*’s knowledge of music and musical structure

might be useful for industrial applications of artificially intelligent music systems. For example,

Pop*’s understanding of music might be used to improve recommendation systems to include

musical features. Another significant contribution would be to use Pop*’s probabilistic

framework for automated music transcription of audio to sheet music.

7.2 Conclusion

As artificial intelligence becomes increasingly present in our society, attention will increasingly

turn towards the limitations of AI. Here, at the frontier of artificial intelligence, computational

creativity will seek to find solutions to overcoming these limitations, enabling computers to

further enrich the human experience.

There have been many times in the course of this research that we have been tempted

to throw up our hands and walk away from trying to define creativity or to invent ways to

124

www.manaraa.com

evaluate it. But driving that frustration is a desire to understand ourselves and the humbling

realization of how far we have to go to understand—let alone implement—creativity.

125

www.manaraa.com

References

[1] Margareta Ackerman, Ashok Goel, Colin G Johnson, Anna Jordanous, Carlos León,

Rafael Pérez Pérez, Hannu Toivonen, and Dan Ventura. Teaching computational

creativity. In Proceedings of the Eighth International Conference on Computational

Creativity, pages 9–16, 2017.

[2] Gabriele Barbieri, François Pachet, Pierre Roy, and Mirko Degli Esposti. Markov

constraints for generating lyrics with style. In Proceedings of the Twentieth European

Conference on Artificial Intelligence, pages 115–120. IOS Press, 2012.

[3] Benjamin Bay, Paul M. Bodily, and Dan Ventura. Deterministic text transformation

via constrained vector-word representation. Proceedings of the Eighth International

Conference on Computational Creativity, pages 49–56, 2017.

[4] Emmanouil Benetos, Simon Dixon, Dimitrios Giannoulis, Holger Kirchho↵, and Anssi

Klapuri. Automatic music transcription: challenges and future directions. Journal of

Intelligent Information Systems, 41(3):407–434, 2013.

[5] George David Birkho↵. Aesthetic Measure. Harvard University Press Cambridge, 1933.

[6] Margaret A. Boden. The Creative Mind: Myths and Mechanisms: Second Edition.

Routledge, 2004.

[7] Paul M. Bodily and Dan Ventura. Musical metacreation using the hierarchical Bayesian

program learning framework. Proceedings of the Fifth International Workshop on Musical

Metacreation, 2017.

[8] Paul M. Bodily and Dan Ventura. Explainability: An aesthetic for aesthetics in com-

putational creative systems. In Proceedings of the Ninth International Conference on

Computational Creativity, pages 153–160, 2018.

[9] Paul M. Bodily and Dan Ventura. Musical metacreation: Past, present, and future. In

Proceedings of the Sixth International Workshop on Musical Metacreation, 2018.

126

www.manaraa.com

[10] Paul M. Bodily and Dan Ventura. Comparative analysis of key inference models for

musical metacreation. In Proceedings of the Sixth International Workshop on Musical

Metacreation, 2018.

[11] Paul M. Bodily and Dan Ventura. Sequential structure inference via multiple self-

alignment. 2018. Paper to be submitted to Association for the Advancement of Artificial

Intelligence Conference on Artificial Intelligence.

[12] Paul M. Bodily and Dan Ventura. Floating and dynamic constraints in non-homogeneous

Markov models. 2018. Paper to be submitted to Association for the Advancement of

Artificial Intelligence Conference on Artificial Intelligence.

[13] Paul M. Bodily and Dan Ventura. Binary relational constraints in non-homogeneous

Markov models. 2018. Paper to be submitted to Association for the Advancement of

Artificial Intelligence Conference on Artificial Intelligence.

[14] Paul M. Bodily, Benjamin Bay, and Dan Ventura. Computational creativity via human-

level concept learning. In Proceedings of the Eighth International Conference on Compu-

tational Creativity, pages 57–64, 2017.

[15] Tom Collins and Robin Laney. Computer–generated stylistic compositions with long–term

repetitive and phrasal structure. Journal of Creative Music Systems, 1(2), 2017.

[16] Tom Collins, Jeremy Thurlow, Robin Laney, Alistair Willis, and Paul Garthwaite. A

comparative evaluation of algorithms for discovering translational patterns in baroque

keyboard works. In Proceedings of the Eleventh International Society for Music Infor-

mation Retrieval Conference, pages 3–8, 2010.

[17] Simon Colton. Creativity versus the perception of creativity in computational systems.

In Proceedings of the Association for the Advancement of Artificial Intelligence Spring

Symposium: Creative Intelligent Systems, volume 8, 2008.

[18] Simon Colton and Geraint A. Wiggins. Computational creativity: The final frontier?

In Proceedings of the Twentieth European Conference on Artificial Intelligence, pages

21–26. IOS Press, 2012.

[19] Simon Colton, Jeremy Gow, Pedro Torres, and Paul Cairns. Experiments in objet trouvé

browsing. In Proceedings of the Second International Conference on Computational

Creativity, pages 238–247, 2010.

127

www.manaraa.com

[20] Simon Colton, Alison Pease, and John Charnley. Computational creativity theory:

The FACE and IDEA descriptive models. In Proceedings of the Second International

Conference on Computational Creativity, pages 90–95, 2011.

[21] Simon Colton, Alison Pease, Joseph Corneli, Michael Cook, Rose Hepworth, and Dan

Ventura. Stakeholder groups in computational creativity research and practice. In

Computational Creativity Research: Towards Creative Machines, pages 3–36. Springer,

2015.

[22] Darrell Conklin and Ian H. Witten. Multiple viewpoint systems for music prediction.

Journal of New Music Research, 24(1):51–73, 1995.

[23] Mihaly Csikszentmihalyi. Flow and the psychology of discovery and invention. Harper-

Perennial, New York, 39, 1997.

[24] Mark Davies. The 385+ million word corpus of contemporary American English (1990–

2008+): Design, architecture, and linguistic insights. International Journal of Corpus

Linguistics, 14(2):159–190, 2009.

[25] Margaret O. Dayho↵, Robert M. Schwartz, and Bruce C. Orcutt. A model of evolutionary

change in proteins. In Atlas of Protein Sequence and Structure, volume 5, pages 345–352.

National Biomedical Research Foundation Silver Spring, MD, 1978.

[26] Arne Eigenfeldt, Oliver Bown, Andrew R. Brown, and Toby Gi↵ord. Distributed

musical decision-making in an ensemble of musebots: Dramatic changes and endings.

In Proceedings of the Eighth International Conference on Computational Creativity.

Association for Computational Creativity, pages 88–95, 2017.

[27] Siegfried Englemann and Elaine C. Bruner. DISTAR: Reading Level I. Science Research

Associates, Chicago, 1974.

[28] Ethan Fast, Binbin Chen, and Michael S Bernstein. Empath: Understanding topic

signals in large-scale text. In Proceedings of the CHI Conference on Human Factors in

Computing Systems, pages 4647–4657. ACM, 2016.

[29] Sheng Gao and Haizhou Li. Octave-dependent probabilistic latent semantic analysis to

chorus detection of popular song. In Proceedings of the Twenty-Third ACM International

Conference on Multimedia, pages 979–982. ACM, 2015.

[30] Christian Guckelsberger, Christophe Salge, and Simon Colton. Addressing the “why?”

in computational creativity: A non-anthropocentric, minimal model of intentional

128

www.manaraa.com

creative agency. In Proceedings of the Eighth International Conference on Computational

Creativity, pages 128–135, 2017.

[31] Steven Heniko↵ and Jorja G. Heniko↵. Amino acid substitution matrices from protein

blocks. Proceedings of the National Academy of Sciences, 89(22):10915–10919, 1992.

[32] Hussein Hirjee and Daniel Brown. Using automated rhyme detection to characterize

rhyming style in rap music. Empirical Musicology Review, 5(4), 2010.

[33] Douglas R. Hofstadter. Godel, Escher, Bach: An Eternal Golden Braid. Vintage Books,

New York, 1980.

[34] Mary Renck Jalongo and Deborah McDonald Ribblett. Using song picture books to

support emergent literacy. Childhood Education, 74(1):15–22, 1997.

[35] Natasha Jaques, Shixiang Gu, Richard E. Turner, and Douglas Eck. Tuning Recurrent

Neural Networks with Reinforcement Learning. PhD thesis, Massachusetts Institute of

Technology, 2016.

[36] Kyle E. Jennings. Developing creativity: Artificial barriers in artificial intelligence.

Minds and Machines, 20(4):489–501, 2010.

[37] Anna Jordanous. A standardised procedure for evaluating creative systems: Computa-

tional creativity evaluation based on what it is to be creative. Cognitive Computation, 4

(3):246–279, 2012.

[38] Anna Jordanous. Stepping back to progress forwards: Setting standards for meta-

evaluation of computational creativity. In Proceedings of the Fifth International Confer-

ence on Computational Creativity, pages 129–136, 2014.

[39] Joseph Kasof. Explaining creativity: The attributional perspective. Creativity Research

Journal, 8(4):311–366, 1995.

[40] Gayla R. Kolb. Read with a beat: Developing literacy through music and song. The

Reading Teacher, 50(1):76, 1996.

[41] Leonard Koren. Which “Aesthetics” Do You Mean? : Ten Definitions. Imperfect

Publishing, Point Reyes, California, 2010.

[42] Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B. Tenenbaum. Human-level

concept learning through probabilistic program induction. Science, 350(6266):1332–1338,

2015.

129

www.manaraa.com

[43] Stefan Lattner, Carlos Eduardo Cancino Chacón, and Maarten Grachten. Pseudo-

supervised training improves unsupervised melody segmentation. In Proceedings of the

International Joint Conference on Artificial Intelligence, pages 2459–2465, 2015.

[44] Stefan Lattner, Maarten Grachten, Kat Agres, and Carlos Eduardo Cancino Chacón.

Probabilistic segmentation of musical sequences using restricted Boltzmann machines.

In Mathematics and Computation in Music, pages 323–334. Springer, 2015.

[45] Yann LeCun, Yoshua Bengio, and Geo↵rey Hinton. Deep learning. Nature, 521(7553):

436–444, 2015.

[46] Rensis Likert. A technique for the measurement of attitudes. Archives of Psychology,

140:54–55, 1932.

[47] Simo Linkola, Anna Kantosalo, Tomi Männistö, and Hannu Toivonen. Aspects of

self-awareness: An anatomy of metacreative systems. In Proceedings of the Eighth

International Conference on Computational Creativity, pages 189–196, 2017.

[48] Christopher Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven Bethard,

and David McClosky. The Stanford CoreNLP natural language processing toolkit.

In Proceedings of Fifty-Second Annual Meeting of the Association for Computational

Linguistics: System Demonstrations, pages 55–60, 2014.

[49] David Meredith, Kjell Lemström, and Geraint A. Wiggins. Algorithms for discovering

repeated patterns in multidimensional representations of polyphonic music. Journal of

New Music Research, 31(4):321–345, 2002.

[50] Leonard B Meyer. Emotion and Meaning in Music. University of Chicago Press, 2008.

[51] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Je↵ Dean. Distributed

representations of words and phrases and their compositionality. In Proceedings of the

Advances in Neural Information Processing Systems, pages 3111–3119, 2013.

[52] Richard G. Morris, Scott H. Burton, Paul M. Bodily, and Dan Ventura. Soup over

bean of pure joy: Culinary ruminations of an artificial chef. In Proceedings of the Third

International Conference on Computational Creativity, pages 119–125, 2012.

[53] Mary Mothersill. The Blackwell guide to aesthetics. In Peter Kivy, editor, Beauty and

the Critic’s Judgment: Remapping Aesthetics, pages 152–166. Blackwell Publishing Ltd,

2004.

130

www.manaraa.com

[54] Martin Mumford and Dan Ventura. The man behind the curtain: Overcoming skepticism

about creative computing. In Proceedings of the Sixth International Conference on

Computational Creativity, pages 1–6, 2015.

[55] Saul B. Needleman and Christian D. Wunsch. A general method applicable to the search

for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology,

48(3):443–453, 1970.

[56] David Norton, Derrall Heath, and Dan Ventura. Finding creativity in an artificial artist.

The Journal of Creative Behavior, 47(2):106–124, 2013.

[57] Joseph C. Nunes, Andrea Ordanini, and Francesca Valsesia. The power of repetition:

Repetitive lyrics in a song increase processing fluency and drive market success. Journal

of Consumer Psychology, 25(2):187–199, 2014.

[58] François Pachet and Pierre Roy. Imitative leadsheet generation with user constraints. In

Proceedings of the Twenty-First European Conference on Artificial Intelligence, pages

1077–1078. IOS Press, 2014.

[59] François Pachet, Pierre Roy, and Gabriele Barbieri. Finite-length Markov processes with

constraints. In Proceedings of the Twenty-Second International Joint Conference on

Artificial Intelligence, pages 635–642, 2011.

[60] François Pachet, Alexandre Papadopoulos, and Pierre Roy. Sampling variations of

sequences for structured music generation. In Proceedings of the International Society

for Music Information Retrieval Conference, pages 167–173, 2017.

[61] Alexandre Papadopoulos, Pierre Roy, and François Pachet. Avoiding plagiarism in

Markov sequence generation. In Proceedings of the Association for the Advancement of

Artificial Intelligence Conference on Artificial Intelligence, pages 2731–2737, 2014.

[62] Alexandre Papadopoulos, François Pachet, Pierre Roy, and Jason Sakellariou. Exact

sampling for regular and Markov constraints with belief propagation. In Proceedings

of the International Conference on Principles and Practice of Constraint Programming,

pages 341–350. Springer, 2015.

[63] George Papadopoulos and Geraint A. Wiggins. AI methods for algorithmic composition

: A survey, a critical view and future prospects. Artificial Intelligence and Simulation of

Behaviour Symposium on Musical Creativity, pages 110–117, 1999.

131

www.manaraa.com

[64] Cecile Paris, William R. Swartout, and William C. Mann. Natural Language Generation

in Artificial Intelligence and Computational Linguistics, volume 119. Springer Science &

Business Media, 2013.

[65] Varvara Pasiali. The use of prescriptive therapeutic songs in a home-based environment

to promote social skills acquisition by children with autism: Three case studies. Music

Therapy Perspectives, 22(1):11–20, 2004.

[66] Guillaume Perez and Jean-Charles Régin. MDDs: Sampling and probability constraints.

In Proceedings of the International Conference on Principles and Practice of Constraint

Programming, pages 226–242. Springer, 2017.

[67] Rafael Pérez y Pérez and Mike Sharples. Three computer-based models of storytelling:

BRUTUS, MINSTREL and MEXICA. Knowledge-based systems, 17(1):15–29, 2004.

[68] Gilles Pesant. A regular language membership constraint for finite sequences of variables.

In Proceedings of the International Conference on Principles and Practice of Constraint

Programming, pages 482–495. Springer, 2004.

[69] Graeme Ritchie. Some empirical criteria for attributing creativity to a computer program.

Minds and Machines, 17(1):67–99, 2007.

[70] Sheri L. Robb, Alicia A. Clair, Masayo Watanabe, Patrick O. Monahan, Faouzi Azzouz,

Janice W Stou↵er, Allison Ebberts, Emily Darsie, Courtney Whitmer, and Joey Walker.

Randomized controlled trial of the active music engagement (AME) intervention on

children with cancer. Psycho-Oncology, 17(7):699–708, 2008.

[71] Pierre Roy and François Pachet. Enforcing meter in finite-length Markov sequences. In

Proceedings of the Association for the Advancement of Artificial Intelligence Conference

on Artificial Intelligence, pages 854–861, 2013.

[72] Pierre Roy, Guillaume Perez, Jean-Charles Régin, Alexandre Papadopoulos, François

Pachet, and Marco Marchini. Enforcing structure on temporal sequences: the Allen

constraint. In Proceedings of the International Conference on Principles and Practice of

Constraint Programming, pages 786–801. Springer, 2016.

[73] Claude Elwood Shannon. A mathematical theory of communication. ACM SIGMOBILE

Mobile Computing and Communications Review, 5(1):3–55, 2001.

[74] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George Van

Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, and

132

www.manaraa.com

Marc Lanctot. Mastering the game of go with deep neural networks and tree search.

Nature, 529(7587):484–489, 2016.

[75] Temple F Smith and Michael S Waterman. Identification of common molecular subse-

quences. Journal of Molecular Biology, 147(1):195–197, 1981.

[76] Mark J. Steedman. A generative grammar for jazz chord sequences. Music Perception:

An Interdisciplinary Journal, 2(1):52–77, 1984.

[77] Janet H. Towell. Motivating students through music and literature. The Reading Teacher,

53(4):284–287, 1999.

[78] Dan Ventura. Mere generation: Essential barometer or dated concept? In Proceedings

of the Seventh International Conference on Computational Creativity, pages 17–24, 2016.

[79] Dan Ventura. How to build a CC system. In Proceedings of the Eighth International

Conference on Computational Creativity, pages 253–260, 2017.

[80] Christina Volioti, Stelios Hadjidimitriou, Sotiris Manitsaris, Leontios Hadjileontiadis,

Vasileios Charisis, and Athanasios Manitsaris. On mapping emotional states and implicit

gestures to sonification output from the ‘intangible musical instrument’. In Proceedings

of the Third International Symposium on Movement and Computing, pages 1–5. ACM,

2016.

[81] Willie Walker, Paul Lamere, Philip Kwok, Bhiksha Raj, Rita Singh, Evandro Gouvea,

Peter Wolf, and Joe Woelfel. Sphinx-4: A flexible open source framework for speech

recognition, 2004.

[82] Geraint A. Wiggins. A preliminary framework for description, analysis and comparison

of creative systems. Knowledge-Based Systems, 19(7):449–458, 2006.

133

